Эдс индукции правило ленца

Эдс индукции правило ленца

§3. Закон электромагнитной индукции. Правило Ленца

Пусть произвольный контур с током находится во внешнем магнитном поле. Из принципа суперпозиции магнитных полей и определения магнитного потока следует, что полный магнитный поток `»Ф»`, пронизывающий контур, состоит из потока от внешнего поля `»Ф»_»внеш»` и потока от собственного поля `»Ф»_»соб»`:

При этом внешний магнитный поток `»Ф»_»внеш»` может изменяться со временем как из-за изменения внешнего магнитного поля во времени (в каждой точке поля индукция внешнего магнитного поля зависит от времени), так и из-за движения контура или отдельных его частей. Собственный магнитный поток `»Ф»_»соб»` может тоже меняться со временем в результате изменения тока в контуре по каким-либо причинам и в результате изменения индуктивности контура (при его деформации, например).

Опытным путём установлено, что независимо от причин, вызывающих изменение полного магнитного потока через контур, в контуре возникает электродвижущая сила, называемая электродвижущей силой индукции:

`=-(d»Ф»)/(dt)`. (4)

Здесь направление нормали к контуру и положительное направление обхода контура, связанные друг с другом правилом буравчика, определяют знак `»Ф»` и ЭДС индукции положительна, если направление её действия совпадает с положительным направлением обхода контура, и отрицательна в противном случае. Под направлением действия ЭДС на некотором участке цепи будем понимать направление действия вдоль этого участка сторонних сил на положительные заряды, т. е. то направление, в котором потечёт ток через участок цепи с ЭДС при мысленном замыкании этого участка резистором.

Равенство (4) и представляет собой математическую запись закона электромагнитной индукции Фарадея. Производную `(d»Ф»)/(dt)` называют скоростью изменения магнитного потока.

Из равенств (3) и (4) получаем:

`=-(d»Ф»_»внеш»)/(dt)-(d»Ф»_»соб»)/(dt)`. (5)

Слагаемое `-(d»Ф»_»внеш»)/(dt)` представляет собой ЭДС индукции, возникающую из-за изменения внешнего магнитного потока. Если собственное поле можно не учитывать (пренебрегать индуктивностью), то ЭДС индукции в контуре определяется только первым слагаемым. Ещё раз подчеркнём, что это слагаемое обусловлено как изменением внешнего поля во времени, так и движением контура или его частей во внешнем поле.

`=-(d»Ф»_»соб»)/(dt)=-(d(LI))/(dt)=-L(dI)/(dt)-I(dL)/(dt)` (6)

называется ЭДС самоиндукции, т. к. оно появляется благодаря изменению во времени собственного магнитного потока через контур. Напомним, что изменение собственного магнитного потока может происходить как за счёт изменения тока (по каким-либо причинам), так и за счёт изменения индуктивности контура.

Если индуктивность остаётся постоянной во времени, то равенство (6) принимает вид:

`=-L(dI)/(dt)`. (7)

Затронем часто встречающийся при решении задач вопрос о том, пренебрегать или нет индуктивностью контура. Этот вопрос в каждом конкретном случае должен решаться отдельно на основании вклада, даваемого в общую ЭДС каждым слагаемым в формуле (5). Чаще всего индуктивностью контура в виде одного витка или рамки, состоящей из малого числа витков, можно пренебречь. А вот индуктивностью контура, состоящего из значительного числа витков, например катушки, пренебрегать не стоит. Одним из критериев для оценки роли индуктивности может служить сравнение величин внешнего магнитного поля и собственного поля контура, а точнее, сравнение изменений величин этих полей за время наблюдения.

Заметим, что в формуле (4) знаки ЭДС индукции и изменения магнитного потока `d»Ф»` противоположны: если `d»Ф»>0`, то `

1.20. Электромагнитная индукция. Правило Ленца

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока , пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб , создается магнитным полем с индукцией 1 Тл , пронизывающим по направлению нормали плоский контур площадью 1 м 2 :

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд , равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Эта формула носит название закона Фарадея .

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца .

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен

Работа силы F Л на пути l равна

По определению ЭДС

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δ t площадь контура изменяется на Δ S = l υΔ t . Изменение магнитного потока за это время равно ΔΦ = Bl υΔ t . Следовательно,

Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

Если сопротивление всей цепи равно R , то по ней будет протекать индукционный ток, равный I инд = инд/ R . За время Δ t на сопротивлении R выделится джоулево тепло

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен F A = I B l . Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δ t эта работа A мех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение . Полная работа силы Лоренца равна нулю . Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным . Его называют вихревым электрическим полем . Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.

Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково , но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Электромагнитная индукция. Правило Ленца

Презентация к уроку

Загрузить презентацию (485,9 кБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель: изучить явление электромагнитной индукции (эми).

Образовательные:

  • изучить явление эми;
  • познакомить учащихся с правилом Ленца.
  • познакомить учащихся с применением явления эми.
  • Воспитательные:

    • на примере биографических фактов из жизни М.Фарадея, показать целеустремленность и трудолюбие ученого;
    • Развивающие:

      • развитие логического мышления для объяснения результатов опытов;
      • развитие интеллектуальных умений учащихся (наблюдать, применять ранее усвоенные знания в новой ситуации, анализировать, делать выводы);
      • Оборудование:

        • портрет Фарадея.
        • приборы для демонстрации электромагнитной индукции (два гальванометра, источники тока: ВС-24, РНШ;
        • разборный трансформатор и принадлежности к нему,
        • полосовые магниты- 2 шт., ключ, реостат на 15 Ом,
        • замкнутое алюминиевое кольцо, кольцо с разрезом),
        • ЭОР «Физика 7-11 классы. Библиотека наглядных пособий»- 1С.
        • Образование — раздел Электродинамика.

          План урока:

          1. Организационный момент.
          2. Повторение.
          3. Мотивационный этап.
          4. Изучение нового материала.
          5. Закрепление.
          6. Итог урока.

          1. Организационный момент. ,

          Здравствуйте, ребята. Сегодня мы с вами на уроке познакомимся с ЭМИ или ласково назовем ее Эмичка. Что расшифровывается как электромагнитная индукция.

          — что называется магнитным потоком?

          — каковы способы изменения магнитного потока?

          — замкнутый контур нормально расположен в магнитном поле.

          Что будет происходить с магнитным потоком, при повороте контура на 180°?

          — что такое электрический ток?

          — каковы условия его существования?

          3. Мотивационный этап:

          Учитель задает вопрос классу: Возможно ли наличие тока в проводнике без источника тока?

          (учащиеся дают свои предположения)

          Опыт: соединить два демонстрационных гальванометра.

          Вращая ручку одного, наблюдаем за отклонением стрелки на втором гальванометре. (рис 1.)

          Проблема: откуда появился ток в гальванометре?

          4. Изучение нового материала:

          Опыт: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром. (рис.2)

          Проблема: Откуда появился ток в замкнутом контуре?

          При затруднении учащимся можно задать несколько подсказывающих вопросов:

          — что из себя представляет контур? (ответ: контур замкнутый)

          — что существует вокруг полосового магнита? (ответ: вокруг магнита существует магнитное поле)?

          — что появляется, когда в контур вносят (выносят) магнит? (ответ: замкнутый контур пронизывает магнитный поток)

          — что происходит с магнитным потоком при внесении (вынесении) магнита в замкнутый контур? (ответ: магнитный поток изменяется)

          Вывод: Причина возникновения электрического тока в замкнутом контуре — изменение магнитного потока, пронизывающего замкнутый контур.

          Это явление впервые было обнаружено Майклом Фарадеем в 1820 году. Оно было названо явлением электромагнитной индукцией.

          Учитель: сейчас послушаем сообщение о М. Фарадее (сообщение учащихся)

          Учитель: Электромагнитная индукция — физическое явление, заключающееся в возникновении вихревого электрического поля, вызывающего электрический ток в замкнутом контуре при изменении потока магнитной индукции через поверхность, ограниченную этим контуром.

          Учитель: Ток, возникающий в замкнутом контуре, называется индукционным.

          (учащиеся записывают в тетрадь)

          Учитель: Рассмотрим все случаи возникновения индукционного тока в замкнутом контуре. Для этого показываю серию опытов, учащиеся должны попытаться объяснить и указать причину возникновения индукционного тока.

          Опыт 1: внесение (вынесение) полосового магнита из замкнутого контура, соединенного с гальванометром.

          Причина возникновения тока: изменение числа линий магнитной индукции.

          Опыт 2: поворот рамки одного гальванометра, соединенного с другим гальванометром.

          Причина возникновения тока: поворот рамки в магнитном поле.

          Собираем электрическую цепь, состоящую из источника тока (ВС-24М, реостата на 15 Ом, ключа, разборного трансформатора, гальванометра — см. рис. 3)

          Опыт 3: замыкание (размыкание) ключа (рис. 3)

          Причина возникновения тока: изменение силы тока в одной цепи приводит к изменению магнитной индукции.

          Опыт 4 перемещение движка реостата. (рис.3)

          Причина возникновения тока: изменение сопротивления в первой цепи приводит к изменению силы тока, а соответственно и изменению магнитной индукции рис. 3.

          Учитель: Отчего зависит величина и направление индукционного тока?

          Опыт: внесение (вынесение) магнита сначала северным полюсом, затем южным полюсом. (рис. 4)

          Вывод: направление тока зависит от направления магнитного поля и направления движения магнита.

          Опыт: внесение (вынесение) магнита в замкнутый контур сначала с одним магнитом, затем с двумя магнитами. (рис. 5)

          Вывод: величина тока зависит от величины магнитной индукции. рис. 5

          Опыт: вносим магнит сначала медленно, затем быстро.

          Вывод: величина тока зависит от скорости внесения магнита.

          Учитель: Для определения направления индукционного тока в замкнутом контуре используется правило Ленца: Индукционный ток имеет такое направление, что созданный им магнитный поток через поверхность, ограниченную контуром, препятствует изменению магнитного потока, вызвавшего этот ток. (учащиеся записывают в тетрадь)

          Опыт: демонстрация правила Ленца (c замкнутым и с разрезом кольцом)

          (пояснения рисунками на доске)

          Учитель: Применим данное правило для следующих случаев: (рис. 6)

          (два случая учитель разбирает сам, записывая план решения на доске, два остальных случая учащиеся выполняют самостоятельно в тетрадях, двух учеников можно вызвать к доске, а можно предложить взаимоконтроль).

          6. Домашнее задание. (на карточках)

          В стальной сердечник трансформатора, подключенного к напряжению 220В (РНШ) вносят замкнутый контур с лампочкой. Почему загорается лампочка при этом? Поясните рисунком. рис. 7.

          Учитель: Явление электромагнитной индукции нашло широкое применение в технике: трансформаторы, поезда на магнитной подушке, металлоискатели (детекторы металлов), запись и информации на магнитные носители и чтение с них.

          Показ видеороликов о применении явления электромагнитной индукции: детектор металлов, запись информации на магнитные носители и чтение с них — диск «Физика 7-11 классы. Библиотека наглядных пособий» Образовательные комплексы.

          1) В чем заключается явление ЭМИ?

          2) Вспомним опыты, позволяющие наблюдать это явление.

          3) Кто открыл явление ЭМИ?

          4) Что мы определяли с помощью правила Ленца?

          Явление электромагнитной индукции было открыто выдающимся английским физиком М.Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

          Магнитным потоком Φ через площадь S контура называют величину

          где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура (рис. 1.20.1).

          Магнитный поток через замкнутый контур. Направление нормали и выбранное положительное направление обхода контура связаны правилом правого буравчика

          Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется Вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м 2 :

          1 Вб = 1 Тл · 1 м 2 .

          Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

          Эта формула носит название закона Фарадея.

          Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца.

          Иллюстрация правила Ленца. В этом примере , а . Индукционный ток Iинд течет навстречу выбранному положительному направлению обхода контура

          Правило Ленца отражает тот экспериментальный факт, что и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

          1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

          Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 1.20.3).

          На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скорость зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен

          Работа силы FЛ на пути l равна

          В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

          Для того, чтобы установить знак в формуле, связывающей и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

          Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный . За время Δt на сопротивлении R выделится джоулево тепло

          Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы ампера . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен FA = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

          Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

          2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Джеймсом Максвеллом в 1861 г.

          Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

          Электромагнитная индукция. Правило Ленца

          Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

          Магнитным потоком Φ через площадь S контура называют величину

          где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура (рис. 1.20.1).

          Магнитный поток через замкнутый контур. Направление нормали и выбранное положительное направление обхода контура связаны правилом правого буравчика

          Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м 2 :

          Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции инд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

          Эта формула носит название закона Фарадея.

          Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение, сформулированное в 1833 г., называется правилом Ленца.

          Рис. 1.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

          Иллюстрация правила Ленца. В этом примере а инд

          Правило Ленца отражает тот экспериментальный факт, что инд и всегда имеют противоположные знаки (знак «минус» в формуле Фарадея). Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

          Изменение магнитного потока, пронизывающего замкнутый контур, может происходить по двум причинам.

          1. Магнитный поток изменяется вследствие перемещения контура или его частей в постоянном во времени магнитном поле. Это случай, когда проводники, а вместе с ними и свободные носители заряда, движутся в магнитном поле. Возникновение ЭДС индукции объясняется действием силы Лоренца на свободные заряды в движущихся проводниках. Сила Лоренца играет в этом случае роль сторонней силы.

          Рассмотрим в качестве примера возникновение ЭДС индукции в прямоугольном контуре, помещенном в однородное магнитное поле перпендикулярное плоскости контура. Пусть одна из сторон контура длиной l скользит со скоростью по двум другим сторонам (рис. 1.20.3).

          Возникновение ЭДС индукции в движущемся проводнике. Указана составляющая силы Лоренца, действующей на свободный электрон

          На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 1.20.3. Она играет роль сторонней силы. Ее модуль равен

          Работа силы FЛ на пути l равна

          По определению ЭДС

          В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За время Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

          Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 1.20.1 и 1.20.2. Если это сделать, то легко прийти к формуле Фарадея.

          Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный Iинд = инд/R. За время Δt на сопротивлении R выделится джоулево тепло

          Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера . Для случая, изображенного на рис. 1.20.3, модуль силы Ампера равен FA = I B l. Сила Ампера направлена навстречу движению проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

          Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника.

          2. Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным. Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом в 1861 г.

          Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводникахпротекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

          ЭДС (ε) — отношение работы сторонних сил по разделению зарядов к величине этого заряда, иначе, способность данного источника давать необходимое количество зарядов необходимой энергии. — ЭДС. ЭДС не является силой в Ньютоновом смысле (неудачное название величины, сохраненное как дань традиции). εi возникает при изменении магнитного потока Ф, пронизывающего контур. — ЭДС индукции. — ЭДС индукции в контуре, содержащем N витков провода. —ЭДС индукции при движении одного из проводников контура (так, чтобы менялся Ф). В этом случае проводник длиной l, движущийся со скоростью v становится источником тока. — ЭДС индукции в контуре, вращающемся в магнитном поле со скоростью ω. Другие формулы, где встречается ЭДС: — закон Ома для полной цепи. В замкнутой цепи ЭДС рождает электрический ток I. Направление индукционного тока определяют по правилам: — правило Ленца — возникающий в замкнутом контуре индукционный ток противодействует тому изменению магнитного потока, которым вызван данный ток; — для проводника, движущегося в магнитном поле, иногда проще воспользоваться правилом правой руки — если расположить раскрытую ладонь правой руки так, чтобу в нее входили силовые линии магнитного поля В, абольшой палец, отставленный в сторону указывал направление скорости v, то четыре пальца руки укажут направление индукционного тока I. — ЭДС самоиндукции при изменении тока в проводник

          ЗАКОН ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

          Эл. ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции. Учитывая направление индукционного тока, согласно правилу Ленца:

          ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.

          Почему «-» ? — т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.

          Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:

          Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи

          , где R — сопротивление проводника.

          Закон электромагнитной индукции. Правило Ленца

          В 1831 году английский ученый физик в своих опытах М.Фарадей открыл явление электромагнитной индукции. Затем изучением этого явления занимались русские ученый Э.Х. Ленц и Б.С.Якоби.

          В настоящее время, в основе многих устройств лежит явление электромагнитной индукции, например в двигателе или генераторе электрического тока тока, в трансформаторах, радиоприемниках, и многих других устройствах.

          Электромагнитная индукцияэто явление возникновения тока в замкнутом проводнике, при прохождении через него магнитного потока. То есть, благодаря этому явлению мы можем преобразовывать механическую энергию в электрическую — и это замечательно. Ведь до открытия этого явления люди не знали о методах получения электрического тока, кроме гальваники.

          Когда проводник оказывается под действием магнитного поля, в нем возникает ЭДС, которую количественно можно выразить через закон электромагнитной индукции.

          Закон электромагнитной индукции

          Электродвижущая сила, индуцируемая в проводящем контуре, равна скорости изменения магнитного потока, сцепляющегося с этим контуром.

          В катушке, которая имеет несколько витков, общая ЭДС зависит от количества витков n:

          Но в общем случае, применяют формулу ЭДС с общим потокосцеплением:

          ЭДС возбуждаемая в контуре, создает ток. Наиболее простым примером появления тока в проводнике является катушка, через которую проходит постоянный магнит. Направление индуцируемого тока можно определить с помощью правила Ленца.

          Правило Ленца

          Ток, индуцируемый при изменении магнитного поля проходящего через контур, своим магнитным полем препятствует этому изменению.

          В том случае, когда мы вводим магнит в катушку, магнитный поток в контуре увеличивается, а значит магнитное поле, создаваемое индуцируемым током, по правилу Ленца, направлено против увеличения поля магнита. Чтобы определить направление тока, нужно посмотреть на магнит со стороны северного полюса. С этой позиции мы будем вкручивать буравчик по направлению магнитного поля тока, то есть навстречу северному полюсу. Ток будет двигаться по направлению вращения буравчика, то есть по часовой стрелке.

          В том случае, когда мы выводим магнит из катушки, магнитный поток в контуре уменьшается, а значит магнитное поле, создаваемое индуцируемым током, направлено против уменьшения поля магнита. Чтобы определить направление тока, нужно выкручивать буравчик, направление вращения буравчика укажет направление тока в проводнике – против часовой стрелки.

          На этом всё! Удачи! Рекомендуем к прочтению — закон Ампера

          Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Правило Ленца

          Электрические и магнитные поля порождаются одними и теми же источниками – электрическими зарядами, поэтому можно предположить, что между этими полями существует определенная связь. Это предположение нашло экспериментальное подтверждение в 1831 г. в опытах выдающегося английского физика М.Фарадея. Он открыл явление электромагнитной индукции.

          Явление электромагнитной индукции лежит в основе работы индукционных генераторов электрического тока, на которые приходится вся вырабатываемая в мире электроэнергия.

        • Магнитный поток
        • Замкнутый контур, помещенный в однородное магнитное поле

          Количественной характеристикой процесса изменения магнитного поля через замкнутый контур является физическая величина называемая магнитным потоком. Магнитным потоком (Ф) через замкнутый контур площадью (S) называют физическую величину, равную произведению модуля вектора магнитной индукции (В) на площадь контура (S) и на косинус угла между вектором В и нормалью к поверхности: Φ = BS cos α. Единица магнитного потока Ф — вебер (Вб): 1 Вб = 1 Тл · 1 м 2 .

          Если вектор магнитной индукции перпендикулярен площади контура, то магнитный поток максимальный.

          Если вектор магнитной индукции параллелен площади контура, то магнитный поток равен нулю.

          • Закон электромагнитной индукции

          Опытным путем был установлен закон электромагнитной индукции: ЭДС индукции в замкнутом контуре равна по модулю скорости изменения магнитного потока через поверхность, ограниченную контуром: Эта формула носит название закона Фарадея.

          Классической демонстрацией основного закона электромагнитной индукции является первый опыт Фарадея. В нем, чем быстрее перемещать магнит через витки катушки, тем больше возникает индукционный ток в ней, а значит, и ЭДС индукции.

          Зависимость направления индукционного тока от характера изменения магнитного поля через замкнутый контур в 1833 г. опытным путем установил русский физик Э.Х.Ленц. Согласно правилу Ленца , возникающий в замкнутом контуре индукционный ток своим магнитным полем противодействует тому изменению магнитного потока, которым он вызван. Более кратко это правило можно сформулировать следующим образом: индукционный ток направлен так, чтобы препятствовать причине, его вызывающей. Правило Ленца отражает тот экспериментальный факт, что всегда имеют противоположные знаки (знак «минус» в формуле Фарадея).

          Ленцем был сконструирован прибор, представляющий собой два алюминиевых кольца, сплошное и разрезанное, укрепленные на алюминиевой перекладине. Они могли вращаться вокруг оси, как коромысло. При внесении магнита в сплошное кольцо оно начинало «убегать» от магнита, поворачивая соответственно коромысло. При вынесении магнита из кольца оно стремилось «догнать» магнит. При движении же магнита внутри разрезанного кольца никакого движения не происходило. Ленц объяснял опыт тем, что магнитное поле индукционного тока стремилось компенсировать изменение внешнего магнитного потока.

          Правило Ленца имеет глубокий физический смысл – оно выражает закон сохранения энергии.

          Смотрите так же:

          • Изменение в законе о осаго 2014 Федеральный закон от 21 июля 2014 г. N 223-ФЗ "О внесении изменений в Федеральный закон "Об обязательном страховании гражданской ответственности владельцев транспортных средств" и отдельные законодательные акты Российской Федерации" (с изменениями и […]
          • Субъект преступления шпионаж «Субъект преступления» 106. К уголовной ответственности за шпионаж (ст. 276 УК РФ) может быть привлечен . • Специальный субъект – иностранный гражданин 107. Лица, которые во время совершения деяния находились в состоянии простого алкогольного, наркотического […]
          • Закон по оплате детского сада Новый закон о детских садах Закон об образовании, или как его теперь называют «закон о детских садах 2013» обсуждался в думе на протяжении полутора лет. Вступил данный закон в силу с 1 сентября 2013 года. У этого законопроекта были и противники, которые […]
          • Юристы адвокаты казань Юрист Казань, юридическая консультация. Адвокат в Казани Усманов Ринат Маратович Адвокат Усманов Ринат Маратович официально зарегистрирован в Управлении Министерства юстиции Российской Федерации и может в полной мере предоставлять услуги адвоката в […]
          • Смешаная пенсия Эксперты в юриспруденции онлайн Естественно, чтобы качественно выполнять свою работу, судебному эксперту необходимо знать законодательство, регламентирующие вопросы производства судебных экспертиз и методику её проведения. Существует различные виды […]
          • Претензия дольщика Досудебная претензия застройщику за просрочку срока сдачи квартиры Составление претензии застройщику Начнем с шапки претензии сверху вниз на примере одного типичного застройщика. Кому. Указываем наименование застройщика и адрес его местонахождения. […]
          • Контейнер для военнослужащих при увольнении Можно ли получить ВПД на контейнер до сдачи дел и должности? Здравствуйте!могу ли я получить ВПД на перевозку личных вещей при наличии приказа по личному составу на перемещение к новому месту службы, но до сдачи дел и должности и исключения из списков части. […]
          • Налог на имущество реквизиты для перечисления Расчет и реквизиты (КБК) для уплаты имущественного налога организациями Налог на имущество организаций подлежит уплате компаниями, владеющими налогооблагаемой собственностью. Недвижимость, учтенная на балансе в виде основных средств, подлежит налогообложению […]