Правило клечковского химия пример

Правило клечковского химия пример

Решение. Значению главного квантового числа последнего энергетического уровня соответствует номер периода, следовательно, элемент находится в 4-м периоде. Сумма валентных электронов показывает номер группы, в которой находится элемент, в данном случае номер группы 7. Так как валентные электроны находятся на d-подуровне, то это элемент побочной подгруппы: 25Mn 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 5 .

Пример 4. Напишите полную электронную формулу атома элемента с зарядом ядра 22.

Пример 5. Напишите полные электронные формулы ионов F, Sn 2+ .

Решение. При образовании отрицательно заряженного иона нейтральный атом элемента принимает электроны: F 0 + 1ē = F; электронная формула иона 9F1s 2 2s 2 2p 6 . Положительно заряженный ион получается, когда нейтральный атом элемента отдает электроны: Sn 0  2ē = Sn 2+ ; электронная формула иона 50Sn 2+ 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 0 .

Упражнения

1. Не пользуясь периодической системой, определите, в какой группе и в каком периоде находится элемент с порядковым номером 49.

2. Покажите распределение электронов по энергетическим уровням в атомах азота, титана, галлия, цезия, вольфрама.

3. Напишите электронные формулы элементов с порядковыми номерами 13, 27 и 56. К каким типам элементов с точки зрения строения атома они относятся?

4. Напишите электронные формулы ионов: Na + , Cl — , Fe 2+ , S 2- , Bi 3+ .

5. Элементы какой группы периодической системы имеют электронное строение внешнего энергетического уровня s 2 p 5

4.2. Окислительно-восстановительные реакции

1. Степень окисления элементов. Реакции, протекающие с изменением степени окисления элементов.

2. Важнейшие окислители и восстановители.

3. Окислительно-восстановительная двойственность на примере пероксида водорода.

4. Составление окислительно-восстановительных реакций:

— метод электронного баланса;

— метод электронно-ионного баланса.

5. Влияние среды на характер ОВР (на примере перманганата калия, соединений хрома, пероксида водорода).

6. Окислительные свойства азотной и серной кислот.

Окислительно-восстановительными называют реакции, протекающие с изменением степени окисления элементов.

Степень окисления  это тот условный заряд атома элемента, который вычисляют, исходя из предположения, что молекула состоит только из ионов (как правило, обозначается арабской цифрой, заряд ставят перед цифрой).

Для нахождения степени окисления используют следующие правила:

степень окисления атомов в простых веществах равна нулю;

фтор во всех соединениях без исключения имеет степень окисления 1;

степень окисления кислорода равна 2 (исключение: фториды кислорода, например, ОF2; пероксиды, субоксиды, озониды);

степень окисления водорода равна +1 (исключение гидриды металлов, например, NaH, СаН2 и др.);

степень окисления щелочных металлов в соединениях равна +1, щелочноземельных +2, алюминия +3;

алгебраическая сумма степеней окисления частиц в молекуле равна нулю.

Для определения степени окисления атомов элементов в молекуле составляют простейшие алгебраические уравнения. Например, для MnO2, K2MnO4, KMnO4 степень окисления марганца (Х) рассчитывают следующим образом:

При определении степени окисления атомов элементов в составе иона необходимо помнить, что заряд иона равен алгебраической сумме степеней окисления атомов элементов, входящих в состав иона.

Заряд иона, как правило, ставят после цифры.

Справочник химика 21

Химия и химическая технология

Пример. Рассмотрим применение правила Клечковского для определения распределения электронов по орбиталям для калия (2=19) и скандия (2 = 21). [c.27]

Правило Клечковского порядок заполнения энергетических состояний определяется стремлением атома к минимальному значению суммы главного и побочного квантовых чисел, причем в пределах фиксированного значения л + / в первую очередь заполняются состояния, отвечающие минимальным значениям п. [c.27]

Правило Клечковского. Следуя правилу Клечковского, заполнение подуровней происходит в последовательности увеличения суммы главного и орбитального квантовых чисел ( +/), причем при каждом значении суммы ( +/) заполнение подуровней идет [c.58]

Лекция 2. Многоэлектронные атомы. Принцип Паули. Максимальное число электронов в электронных слоях и оболочках. Правило Хунда. Последовательность энергетических уровней и подуровней электронов в много-электронных атомах. Правила Клечковского. [c.178]

Распределение электронов по энергетическим уровням подчиняется трем основным принципам 1) принципу Паули 2) принципу наименьшей энергии (правило Клечковского) и 3) правилу Хунда. [c.33]

Правило Хунда. Последовательность заполнения энергетических уровней в атомах. Правило Клечковского [c.78]

Таким образом, в многоэлектронных атомах энергия электрона зависит не только от главного, но и от орбитального квантового числа. Главное квантовое число определяет здесь лишь некоторую энергетическую зону, в пределах которой точное значение энергии электрона определяется величиной I. При этом справедливо первое правило Клечковского [c.61]

Принцип минимума энергии. Правило Клечковского. Принцип заключается в том, что электрон в первую очередь располагается в пределах электронной подоболочки с наинизшей энергией. [c.60]

Следует иметь в виду, что правила Клечковского не отражают частных особенностей электронной структуры атомов некоторых элементов. Например, при [c.69]

Энергия электрона в основном определяется главным квантовым числом п и побочным /, поэтому сначала заполняются те подуровни, для которых сумма значений квантовых чисел ми I является меньшей (правило Клечковского). [c.70]

В табл. 3 представлено заполнение орбиталей с учетом правила Клечковского. Напомним, что должно обязательно сохраняться условие 1 п— I. Из табл. 3 вытекает, что заполнение электронами подуровней происходит в следующем порядке [c.69]

В тех случаях, когда сумма (п-)-/) одинакова для рассматриваемых электронных подоболочек, при распределении электронов используется второе правило Клечковского [c.61]

Покажите с помощью правила Клечковского, что заполнение 4/-подуровня энергетически выгодно в шестом периоде, 5/ — в седьмом периоде. [c.170]

Конкретная реализация этого принципа может быть осуществлена на основе правила Клечковского [c.43]

Энергия д- и тем более Г-подуровней на уровне с номером п оказывается выше энергии 8- и даже иногда р-подуровня на уровне с номером п+1. Это происходит из-за сближения энергетических уровней при увеличении значения п. Например, Вы могли заметить на схеме, что уровень 3(1 расположен по энергетической шкале выше, чем уровень 4б. В общем случае соблюдается правило Клечковского [c.36]

Очередность подоболочек по энергии определяется с помощью правила Клечковского. Поясним это. [c.60]

Таким образом, правило Клечковского отражает строгую закономерность последовательного заполнения электронных уровней атомов с ростом порядкового номера элемента. Оно позволяет установить причину появления переходных элементов — семейства скандия (Зс/), иттрия (4с(), лантана (5 ), лантаноидов (4/) и актиноидов (5/) в периодической системе элементов Д. И. Менделеева. Кроме того, на основании этого правила можно предсказать строение восьмого и девятого пери- [c.41]

Правило Клечковского дает возможность определять электронные структуры как для известных элементов, так и для еще неизвестных трансурановых элементов. [c.69]

Распределение электронов в атоме осуществляется в соответствии с принципом наименьшей энергии. Так как энергия электрона в основном определяется значениями глазного (п) к побочного (/) квантовых чисел, то сначала электронами заполняются те подуровни, для которых сумма (п+1) меньше (первое правило Клечковского). Это значит, что и энергии их в этом положении меньше. [c.18]

Дайте формулировку правила Клечковского. Как оно определяет порядок заполнения АО Какие АО имеют одинаковое значение суммы п+1, равное 3, 4, 5, 6 или 7 [c.90]

Как правило Клечковского объясняет заполнение (п—l)d-АО после пз-АО и до заполнения пр-АО Приведите примеры. [c.90]

В случае, когда для двух подуровней суммы значений п и I равны, сначала идет заполнение подуровня с меньшим значением п (2-е правило Клечковского). [c.96]

Правило Клечковского и его работы в этой области — крупнейший вклад в развитие теории периодической системы за последние 30 лет. [c.42]

Правило Клечковского. Иногда заполнение последующих электронных уровней начинается до того, как завершается заполнение предыдущих (рис. И). Так, 45-электроны появляются в атомах, когда не заполнены еще 3 -орбитали. Аналогичная картина наблюдается для 55- и 4й[-, б5- и 5 -электропов. Правило заполнения орбиталей сформулировано советским ученым Клечковским. Оно заключается в том, что заполнение орбиталей происходит в последовательном увеличении суммы главного и орбитального квантовых чисел (п + О = 2, 3. .. При каждом значении суммы (п +/) заполнение орбиталей идет от больших I и меньших п к меньшим / и ббльшим п. [c.69]

Шестой период, как и пpeдыдyш e, начинается с двух й-элементов (цезий и барий), которыми завершается заполнение орбиталей с суммой (п + 1), равной 6. Теперь, в соответствии с правилами Клечковского, должен заполняться подуровень 4/ (тг = 4, = 3) с суммой (п + 1), равной 7, и с наименьшим возможным при этом значении главного квантового числа. На самом же деле у лантана (2 = 57), расположенного непосредственно после бария, появляется не 4/-, а 5 -электрон, так что его электронная структура соответствует формуле 15 25 2р 3з 3р 3 °4й 4р 4с °55 5р 5 б5 . Однако уже у следующего за лантаном элемента церия (2 = 58), действительно, начинается застройка подуровня 4/, на который переходит и единственный 5с -электрон, имевшийся в атоме лантана в соответствии с этим электронная структура атома церия выражается формулой 15 25 2р 3з 3р 3й °45 4р 4 °4/ 55 5р б5 . Таким образом, отступление от второго правила Клечковского, имеющее место у лантана, носит временный характер начиная с церия, происходит последовательное заполнение всех орбиталей 4/-подуровня. Расположенные в этой части шестого периода четырнадцать лантаноидов относятся к f-элементам и близки по свойствам к лантану. Характерной особенностью построения электронных оболочек их атомов является то, что при переходе к последующему /-элементу новый электрон занимает место не во внешнем (га = 6) и не в предшествующем (п = 5), а в еще более глубоко расположенном, третьем снаружи электронном слое (п = 4). [c.69]

Описать строение электронных оболочек атомов можно с помощью принципа Паули, правила Клечковского и правила Гунда, которые используют для этого представления о так называемых квантовых числах. [c.77]

Порядок заполнения подуровней можно определить на основании правила Клечковского. Последовательность заполнения электронами подуровней многоэлектронных атомов зависит от суммы (п +[). В пределах каждого значения суммы (я + /) порядок заполнения подуровней соответствует возрастанию главного квантового числа и, следовательно, уменьшению орбитального квантового числа. Комбинации, в которых / > п, исключаются. [c.78]

Выпишите из таблицы Д.И.Менделеева порядок заполнения подуровней и сопоставьте его с порядком заполнения подуровней, который следует из правила Клечковского. Какие существенные различия следует отметить / [c.81]

Исключения из правила Клечковского наблюдаются для элементов с полностью или наполовину заполненными с1- и /-подуровнями. Так, у Си электронной конфигурации [Аг]Зс 45 отвечает меньшая энергия, чем конфигурации [Аг]Зс 45 (символ [Аг] показывает, что строение внутренних электронных уровней такое же, как в аргоне). На Зй-поду-ровне находится 10 (во втором случае 9) электронов, а на 45-подуровне — один электрон (во втором случае 2). Первая конфигурация отвечает основному состоянию, вторая — возбужденному. [c.19]

Применяя правило Клечковского, получим следующую последовательность заполнения энергетических подуровней [c.36]

I или II группы Периодической таблицы, у которого заполняется 5-подуровень). Почему Ad и 4/подуровни пустые Дело в том, что энергия 4с/-подуровня выше, чем 5 , а 4/- даже выше, чем 6з, а сначала заполняются подуровни с меньшей энергией (правило Клечковского). Итак, электроны ЯЬ» могут находиться на 4р-орбиталях. [c.38]

Графически выражающем правила Клечковского. Заполнение про исходит от меньших значений суммы п + I) к большим в порядке, указанном стрелками. Нетрудно заметить, что эта последовательность совпадает с последо- гпо/1ьнсе тнто е > Сё). В шестом периоде (третьем большом) заполнение 5 -слоев начинается с 2=57—La (5 6з ) и продолжается у элементов 72—80 (Н —5[c.80]

В действительности на примере хрома можно говорить не о нарушении правила Клечковского, а скорее о его дополнении. Оказалось, что переходные элементы, имеющие полностью заполненную /-орбиталь ( ) или наполовину заполненную -орбн- галь ( ), обладают особой устойчивостью. [c.337]

В сл чае, если сумма /г+/ для двух электронов одинакова (например, для Зй- и 4р-подуровней п- -1=5), то сначала электроны занимают атомную орбиталь, соотвежтвуюш,ую меньшему п (второе правило Клечковского). [c.36]

Безусловно, основное значение правила Клечковского заключается в его предсказательном характере. Если в соответствии е правилом Клечковского девятнадцатый электрон атома калия находится на 45-орбитали, то это означает, что энергия электрона на 45-орбитали меньше, чем энергия его на Зй -орбитали. Однако соотношение энергий электронов на 45- и Зс -орбиталях в дальнейшем изменяется. На рис. 11, где показано изменение энергий электронов на всех орбиталях в зависимости от заряда ядра, можно видеть, что, начиная со скандия, энергии электронов на За -подуровне оказываются меньше, чем на 45-подуровне. Например, у атома титана сначала будут отрываться электроны с 45-подуровня, а затем с З -подуровпя. [c.70]

В любом атоме число орбиталей бесконечно. С увеличением заряда число электронов в атоме увеличивается, причем заполнение орбиталей электронами происходит в определенной последовательности по принципу наименьшего запаса энергии, согласно которому наиболее усгойчиво такое состояние атома, при котором его электроны имеют наименьш то энергию, а наименьшей энергией обладают подуровни с самыми низкими значениями и и /. Таким образом, заполнение орбиталей идет в порядке возрастания суммы п -1 ( правило Клечковского). При одинаковых значениях суммы п-1 в первую очередь заполняется орбиталь с меньшим значением п (второе правило Клечковского). [c.14]

Правило Клечковского позволяет заранее предвидеть появление в периодической системе Д. И. Менделеева рядов из с1-, а затем из /-элементов, которые вклиниваются между 5- и р-элементамн того же большого периода. Правило позволяет также предсказать структуру пока еще не существующих периодов. [c.86]

Построение периолической системы элементов. Используя правило Клечковского, перейдем к объяснению расположения элементон в периодической системе Д. И. Менделеева (рис. 17.2). Элементы 1 периода периодической системы харак1еризуются значениями П1=, 1 0 (5-орбита) и, следовательно, I. Согласно уравнению [c.197]

Смотреть страницы где упоминается термин Правило Клечковского: [c.41] [c.170] [c.37] [c.34] Основы общей химии (1988) — [ c.196 ]

Общая химия в формулах, определениях, схемах (1996) — [ c.39 ]

Общая химия в формулах, определениях, схемах (1985) — [ c.39 ]

Общая химия в формулах, определениях, схемах (0) — [ c.39 ]

Правило Клечковского

Правило Клечковского (также Правило n+l; также используется название правило Маделунга) — эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах.

Правило Клечковского гласит:

Заполнение электронами орбиталей в атоме происходит в порядке возрастания суммы главного и орбитального квантовых чисел . При одинаковой сумме раньше заполняется орбиталь с меньшим значением .

Правило n+l предложено в 1936 г. немецким физиком Э. Маделунгом; в 1951 г. было вновь сформулировано В. М. Клечковским.

Содержание

Распределение электронов по орбиталям в водородоподобных и многоэлектронных атомах

По мере увеличения суммарного числа электронов в атомах (при возрастании зарядов их ядер, или порядковых номеров химических элементов) атомные орбитали заселяются таким образом, что появление электронов на орбитали с более высокой энергией зависит только от главного квантового числа n и не зависит от всех остальных квантовых чисел, в том числе и от l. Физически это означает, что в водородоподобном атоме (в отсутствие межэлектронного отталкивания) орбитальная энергия электрона определяется только пространственной удаленностью зарядовой плотности электрона от ядра и не зависит от особенностей его движения в поле ядра. Поэтому энергетическая последовательность орбиталей в водородоподобном атоме выглядит просто:

Приведённую в таблице очерёдность заполнения электронами атомных орбиталей удобно представить в виде схемы:

Исключения из правила Клечковского

Эмпирическое правило Клечковского и вытекающее из него схема очерёдностей несколько противоречат реальной энергетической последовательности атомных орбиталей только в двух однотипных случаях: у атомов Cr, Cu, Nb, Mo, Ru, Rh, Pd, Ag, Pt, Au [1] имеет место “провал” электрона с s-подуровня внешнего слоя на d-подуровень предыдущего слоя, что приводит к энергетически более устойчивому состоянию атома, а именно: после заполнения двумя электронами орбитали 6s следующий электрон появляется на орбитали 5d, а не 4f, и только затем происходит заселение четырнадцатью электронами 4f орбиталей, затем продолжается и завершается заселение десятиэлектронного состояния 5d. Аналогичная ситуация характерна и для орбиталей 7s, 6d и 5f.

Мнемоническое правило

Нас арифметикой банальною не мучай,
Над нами лишь Клечковский — господин,
А он сказал, что 3+2 получше
Чем, например, 4+1

Литература

  1. Корольков Д. В. Основы неорганической химии. — М.:Просвещение, 1982. — 271 с.

Примечания

Wikimedia Foundation . 2010 .

Смотреть что такое «Правило Клечковского» в других словарях:

Правило n l — Правило Клечковского (также Правило n+l; за рубежом обычно используется название правило Маделунга) эмпирическое правило, описывающее энергетическое распределение орбиталей в многоэлектронных атомах. Заполнение электронами орбиталей в атоме… … Википедия

Правило Хунда — определяет порядок заполнения орбиталей определённого подслоя и формулируется следующим образом: модуль суммарного значения спинового квантового числа электронов данного подслоя должен быть максимальным. Сформулировано Фридрихом Хундом в 1925… … Википедия

Клечковский, Всеволод Маврикиевич — Клечковский Всеволод Маврикиевич Дата рождения: 28 ноября 1900(1900 11 28) Место рождения: Москва Дата смерти: 2 мая 1972(1972 05 02) … Википедия

АТОМ — (от греч. atomos неделимый), наименьшая частица хим. элемента, носитель его св в. Каждому хим. элементу соответствует совокупность определенных А. Связываясь друг с другом, А. одного или разных элементов образуют более сложные частицы, напр.… … Химическая энциклопедия

P-элементы (химические) — p элементами называют химические элементы, в атомах которых электрон с наивысшей энергией занимает p орбиталь. p элементами являются: в 1 м периоде нет p элементов во 2 м периоде B Ne в 3 м периоде Al Ar в 4 м периоде Ga Kr в 5 м периоде In Xe в… … Википедия

p-элементы — Для улучшения этой статьи желательно?: Найти и оформить в виде сносок ссылки на авторитетные источники, подтверждающие написанное. Добавить иллюстрации … Википедия

Электронная конфигурация — Для термина «конфигурация» см. другие значения. Электронные атомные и молекулярные орбитали Электронная конфигурация формула расположения … Википедия

Принцип Паули — Эта статья о квантовой физике. О сходной по названию шутке научного юмора см. Эффект Паули. Квантовая м … Википедия

Всеволод Клечковский — Клечковский Всеволод Маврикиевич (28 ноября 1900 2 мая 1972) советский агрохимик. Родился в Москве. Окончил Московскую сельскохозяйственную академию (1929 г.). С 1930 г. работал там же (с 1955 г. профессор). Академик ВАСХНИЛ (с 1956 г.) Основное… … Википедия

Всеволод Маврикиевич Клечковский — Клечковский Всеволод Маврикиевич (28 ноября 1900 2 мая 1972) советский агрохимик. Родился в Москве. Окончил Московскую сельскохозяйственную академию (1929 г.). С 1930 г. работал там же (с 1955 г. профессор). Академик ВАСХНИЛ (с 1956 г.) Основное… … Википедия

1. Заполнение энергетических подуровней электронами происходит таким образом, чтобы сумма n+l была минимальна, т.е. min(n+l)

2. Если возможны два различных пути заполнения, при которых выполняется 1 правило, то реализуется тот путь, при котором минимально n, min(n).

Так, например, после подуровня 3p в указанной выше последовательности происходит заполнение не подуровня 3d, а подуровня 4s. Действительно, для подуровня 3d n+l=3+2=5, а для 4s n+l=4+0=4, что отвечает 1 правилу Клечковского. Для подуровней 6s, 5d, 4f сумма n+l соответственно равна 6+0, 5+2, 4+3. Для этой последовательности соблюдаются оба правила Клечковского.

Таким образом, в атоме каждому энергетическому уровню соответствует несколько подуровней. Для n>1 число подуровней числено совпадает с n (на втором уровне могут быть только два подуровня, на третьем уровне только три подуровня и т.д.).

Максимальное количество электронов N’, которые могут находиться на подуровне со значением орбитального квантового числа, равного l, определяется уравнением

C учетом этой формулы получается, что каждый тип орбитали характеризуется следующими максимальными числами электронов, которые могут на них располагаться

тип орбитали s p d f g h

максимум электронов 2 6 10 14 18 22

На каждой орбитали располагается не более двух электронов, причем согласно принципу Паули каждая пара электронов в пределах одной и той же орбитали должна иметь антипараллельные спины (т.е. s=1/2 и s=-1/2).

Химия. Билеты

Понятие об энтропии. Изменение энтропии в различных процессах. Стандартная энтропия.

Электролитическая диссоциация воды и ионное произведение воды. Концентрация водородных и гидроксидных ионов.

Понятие обратимой реакции. Химическое равновесие. Принцип Ле-Шателье. Сделать анализ на конкретных примерах.

Теория электролитической диссоциации. Ион гидроксония. Сила электролита. Ступенчатая диссоциация.

Характеристика построения электрона в атоме. Квантовые числа. Физический смысл и цифровые значения квантовых чисел.

Зависимость скорости реакции от температуры. Правило Вант-Гоффа. Уравнение Аррениуса и его анализ. Общие уравнения.

Скорость химической реакции. Влияние на нее различных факторов.

Закон действия масс. Константа скорости реакции, ее физические свойства. Расселение электронов в атоме по орбиталям. Правило Клечковского. Электронные формулы и семейства элементов. Конкретный пример.

Реакции в растворах электролита. Условия протекания. Практическая необратимость.(Идет, когда происходит связывание ионов, связываются только в 3 случаях-каких?)

Распределение ионов по орбиталям согласно правилу Гунда. Электронно-графические формулы. Конкретный пример.

Количественные характеристики химической связи. Энергия, длина, валентные узлы, дипольный момент.

Понятие об энергии активации. Активированный комплекс.

Осмос. Осмотическое давление. Примеры осмоса в жизни.

Состояние сильных электролитов в растворах. Кажущаяся степень диссоциации сложных электролитов. Ионная атмосфера (шуба). Активная концентрация и электрическая проницаемость. Ионизирующая способность растворителей.

Энергия Гиббса. Второе начало термодинамики. Направление химических процессов. Термодинамические расчеты.

Нелокализованная химическая связь. Строение молекулы бензола. Вид гибридизации углерода в бензоле.(sp 2 ).

Причины образования химической связи. Кривая потенциальная энергия водорода. Насыщаемость. Ковалентные связи.

Водородные гидроксидные показатели pH и pOH. Индикаторы. Принцип действия индикатора на примере лакмуса.

Температуры замерзания и кипения растворов. Законы Рауля. Физические свойства криоскопической и эбулиоскопической констант.

Направление химических связей и строение молекул в пи и сигма связях.

Энергия ионизации и потенциал ионизации. Средство к электрону. Характер изменений по периодам и группам периодической системы. Электроотрицательность.

Уравнение Шредингера. Волновая функция. Физические свойства величины кси-квадрат. Принципы решения уравнения атома водорода. Квантовые числа, их физический смысл.

Давление или упругость насыщенного пара над чистым растворителем (водой) и над раствором. Объяснить причины различия законом Рауля, относительно понижения давления пара над раствором есть мольная доля этого вещества.

Механизм химической реакции и подробно цепные реакции.

Влияние катализаторов на скорость и равновесие химических реакций.

Общая и неорганическая химия

Теория строения атома основана на законах, описывающих движение микрочастиц (электронов, атомов, молекул) и их систем (например, кристаллов). Массы и размеры микрочастиц чрезвычайно малы по сравнению с массами и размерами макроскопических тел. Поэтому свойства и закономерности движения отдельных микрочастиц отличаются от свойств и закономерностей движения макроскопических тел, изучаемых классической физикой. Движение и взаимодействие микрочастиц описывает квантовая механика, которая основывается на представлении о квантовании энергии, волновом характере движения микрочастиц и вероятностном (статистическом) методе описания микрообъектов.

Примерно в начале XX в. исследования явлений (фотоэффект, атомные спектры) привели к выводу, что энергия распространяется и передаётся, поглощается и испускается не непрерывно, а дискретно, отдельными порциями – квантами. Энергия системы микрочастиц также может принимать определённые значения, которые являются кратными частицами квантов.

Предположение о квантовании энергии впервые было высказано М. Планком в 1900 г. и было обосновано Эйнштейном в 1905 г.: энергия кванта зависит от частоты излучения

: ,

– постоянная Планка ()

Частота колебаний и длина волны связаны соотношением: ,

где – скорость света.

Согласно соотношению (1), чем меньше , тем больше энергия кванта и наоборот. Таким образом, ультрафиолетовые и рентгеновские лучи обладают большей энергией, чем скажем радиоволны и инфракрасные лучи. Для описания электромагнитного излучения привлекают как волновые, так и корпускулярные представления: с одной стороны монохроматическое излучение распространяется как волна и характеризуется длиной волны , с другой стороны оно состоит из микрочастиц – фотонов, переносящих кванты энергии.

Явление дифракции электромагнитного излучения доказывает его волновую природу. В то же время электромагнитное излучение обладает энергией, массой, производит давление. Так, вычислено, что за 1 год масса Солнца уменьшается за счёт излучения на .

В 1924 г. Луи де Бройль предложил распространить корпускулярно-волновые представления на все микрочастицы, т.е. движение любой микрочастицы рассматривать как волновой процесс. Математически это выражается соотношением де Бройля, согласно которому частице массой , движущейся со скоростью , соответствует волна длиной :

, (2)

– импульс частицы.

Гипотеза де Бройля была экспериментально подтверждена обнаружением дифракционного и интерферентного эффектов потока электронов.

Согласно соотношению (2) движению электрона (, ) отвечает волна длиной , т.е. её длина соизмерима с размерами атомов.

В 1925 г. Шрёдингер предположил, что состояние движения электрона в атоме должно описываться уравнением стоячей электромагнитной волны. Он получил уравнение, которое энергию электрона связывает с пространством Декартовых координат и так называемой волновой функцией , которая соответствует амплитуде 3-х мерного волнового процесса:

, где

– полная энергия электрона

– потенциальная энергия электрона

– вторая частная производная

Уравнение Шредингера позволяет найти волновую функцию как функцию координат. Физический смысл волновой функции в том, что квадрат её модуля определяет вероятность нахождения электрона в элементарном объёме , т.е. характеризует электронную плотность.Т. к. электрон обладает свойствами волны и частицы, мы не можем определить его положение в пространстве в определённый момент времени. Электрон размазан, т.е. делокализирован в пространстве атома. В этом заключается принцип Гейзенберга.

Микрочастица, так же как и волна не имеет одновременно точных значений координат и импульса. Это проявляется в том, что чем точнее определяется координаты частицы, тем неопределеннее её импульс, и наоборот. Поэтому мы говорим о максимально вероятном нахождении электрона в данном месте в определённый момент времени. Та область пространства, где >90% находится электрон называется атомной орбиталью. Уравнение Шредингера имеет множество решений, но физически осмысленное решение только в определённых условиях.

Для описания стоячей волны, образованной в атоме движущимся электроном, т.е. для нахождения волновой функции необходимы квантовые числа.

В 3-х мерном пространстве 4-мя квантовыми числами описывается состояние электрона:

Главное квантовое число характеризует удалённость электрона от ядра и определяет его энергию (чем больше , тем больше энергия электрона и тем меньше энергия связи с ядром). принимает целочисленные значения от 1 до Ґ.

Состояние электрона характеризующееся различными значениями главного квантового числа , называется электронным слоем (электронной оболочкой, энергетическим уровнем). Они обозначаются цифрами 1, 2, 3, 4, 5, … или соответственно буквами K, L, M, N, O ….

Квантовое состояние атома с наименьшей энергией – основное состояние, а с более высокой – возбуждённое состояние. Переход электрона с одного уровня на другой сопровождается либо поглощением, либо выделением энергии: .

Побочное квантовое (орбитальное, азимутальное) число (принимает все целочисленные значения от 0 до (n-1)).

Состояние электрона характеризующееся различными значениями побочного квантового числа называется энергетическим подуровнем. В пределах каждого уровня с увеличением , растёт энергия орбитали.

Каждому значению соответствует определённая форма орбитали (например, при – это сфера, центр которой совпадает с ядром).

Магнитное квантовое число характеризует ориентацию орбитали в пространстве (принимает все целочисленные значения от — до +).

Например, для . В пределах каждого подуровня орбиталь имеет одинаковую энергию.

Спиновое квантовое число характеризует вращательный момент, который приобретает электрон в результате собственного вращения вокруг своей оси (принимает два значения: – вращение по часовой стрелке, – вращение против часовой стрелки).

Атомные орбитали заполняются электронами в соответствии с 3-мя принципами:

Принцип устойчивости (принцип min энергии): Каждая новая орбиталь заполняется только после того, как будут заполнены все предыдущие, т.е. более устойчивые (с min энергией) орбитали.

Энергия атомных орбиталей возрастает следующим образом:

Правило Клечковского: заполнение электронами атомных орбиталей происходит в соответствии с увеличением суммы главного и побочного квантовых чисел; если одинакова, то атомная орбиталь заполняется от больших и меньших к меньшим и большим .

Принцип Паули: в атоме не может быть 2 электрона, у которых 4 одинаковых квантовых числа. Следовательно, на 1-ой орбитали могут находиться не более 2-х электронов, отличающихся друг от друга значением спинового квантового числа. Отсюда следует, что максимальное количество электронов на энергетическом уровне , на энергетическом подуровне .

Правило Хунда: электроны располагаются на орбиталях равной энергии таким образом, чтобы их суммарный спин был максимальный. Это означает, что первоначально электроны заполняют все свободные орбитали данного подуровня по 1-му, имея при этом параллельные спины, и только потом происходит заполнение этих орбиталей 2-ми электронами.

Px Py Pz

Количество неспаренных электронов на внешнем уровне определяет валентность элемента, т.е. способность образовывать химические связи с другими атомами. В большинстве случаев, но не всегда.

5 4

4 3

3 2

2 1

1

Периодический закон (1869 г): свойства простых тел, а также свойства и формы соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

До появления сведений о сложном строении атома основной характеристикой элемента служил атомный вес (относительная атомная масса). Развитие теории строения атома привело к установлению того факта, что главной характеристикой атома является положительный заряд ядра.

В современной формулировке периодический закон звучит: свойства химических элементов, а также формулы и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда ядер их атомов.

Физической основой структуры периодической системы элементов служит определённая последовательность формирования электронных конфигураций атомов по мере роста порядкового номера элемента.

В зависимости от того, какой энергетический подуровень заполняется электронами последним, различают 4 типа элементов:

– элементы (последним заполняется -подуровень внешнего энергетического уровня)

– элементы (последним заполняется -подуровень внешнего энергетического уровня)

– элементы (последним заполняется -подуровень предпоследнего энергетического уровня)

– элементы (последним заполняется -подуровень 3-го снаружи энергетического уровня).

Горизонтально располагаются периоды – последовательный ряд элементов, электронная конфигурация внешнего энергетического уровня которых изменяется от до . Номер периода совпадает со значением главного квантового числа внешнего энергетического уровня.

Вертикально располагаются группы – элементы имеющие сходное электронное строение. У элементов главной подгруппы последним заполняется и подуровни внешнего энергетического уровня, у элементов побочной подгруппы происходит заполнение внутренних и подуровней. Одинаковый номер группы, как правило, определяет число электронов, которое может участвовать в образовании химических связей.

Строение многоэлектронных атомов. Принцип наименьшей энергии, принцип Паули, правило Гунда, правило Клечковского. Электронные формулы

Число электронов, которые могут находиться на одном энергетическом уровне, определяется формулой 2n2, где n – номер уровня. Максимальное заполнение первых четырех энергетических уровней: для первого уровня – 2 электрона, для второго – 8, для третьего – 18, для четвертого – 32 электрона. Максимально возможное заполнение электронами более высоких энергетических уровней, в атомах известных элементов не достигнуто.

Квантово-механические расчеты показывают, что в многоэлектронных энергия электронов одного уровня неодинакова; электроны заполняют атомные орбитали разных видов и имеют разную энергию. Каждый энергетический уровень, кроме первого, расщепляется на такое число энергетических подуровней, сколько видов орбиталей включает этот уровень. Второй энергетический уровень расщепляется на два подуровня (2s – и 2p-подуровни), третий энергетический уровень – на три подуровня (3s-, 3p- и 3d-подуровни).

Каждый s-подуровень содержит одну s орбиталь, каждый р-подуровень – три р-орбитали, каждый d-подуровень семь f-орбиталей.

Закономерность заполнения электронных оболочек атомов определяется принципом запрета, установленным в 1925 г швейцарским физиком Паули (принцип Паули):

В атоме не могут одновременно находиться два электрона с одинаковым набором четырех квантовых квантовых чисел (заполнение электронами орбиталей происходит следующим образом: сначала на каждой орбитали располагается по одному электрону, затем, после заполнения всех орбиталей происходит распределение вторых электронов с противоположным спином).

Используя понятия квантовые числа можно сказать, что:

Каждый электрон в атоме однозначно характеризуется своим набором четырех квантовых чисел — главного n, орбитальногоl, магнитного ml, и спинового ms.

Заселение электронами энергетических уровней, подуровней и атомных орбиталей подчиняется следующему правилу:

В невозбужденном атоме все электроны обладают наименьшей энергией (принцип наименьшей энергии).

Это означает, что каждый из электронов, заполняющих оболочку атома, занимает такую орбиталь, чтобы атом в целом имел минимальную энергию. Последовательно квантовое возрастание энергии подуровней происходит в следующем порядке: 1s — 2s -2р — 3s – 3р — 4s –3d — 4р — 5s -….

Такой порядок увеличения энергии подуровней определяет расположение эле Ментов в Периодической системе.

Заполнение атомных орбиталей внутри одного энергетического подуровня происходит в соответствии с правилом, сформулированным немецким физиком Ф. Хундом (1927г) (правило Хунда):

При данном значении квантового числа l (т.е. в пределах одного подуровня) в основном состоянии электроны располагаются таким образом, что значение суммарного спина атома максимально. Это означает, что на подуровне должно быть максимально возможное число неспаренных электронов.

Порядок возрастания энергии атомной орбитали в сложных атомах описывается правилом Клечковского: энергия атомной орбитали возрастает в соответствии с увеличением n +l главного и орбитального квантовых чисел. При одинаковом значении суммы энергия меньше у атомной орбитали с меньшим значением главного квантового числа.

Распределение электронов по различным атомным орбиталям называют электронной конфигурацией атома. Электронная конфигурация с наименьшей энергией соответствует основному состоянию атома, остальные конфигурации относятся к возбужденным состояниям.

Электронную конфигурацию атома изображают двумя способами – в виде электронных формул и электронно-графических диаграмм. При написании электронных формул используют главное и орбитальное квантовые числа. Подуровень обозначают с помощью главного квантового числа (цифрой) и орбитального квантового числа (соответствующей буквой). Число электронов на подуровне характеризует верхний индекс. Например. Для основного состоянии атома водорода электронная формула: 1s1.

Более полно строение электронных подуровней можно описать с помощью электронографических диаграмм, где распределение электронов по подуровням представляют в виде квантовых ячеек. Орбиталь в этом случае принято условно изображать квадратом, около которого проставлено обозначение подуровня. Подуровни на каждом уровне должны быть немного смещены по высоте, так как их энергия несколько различается. Электроны обозначают стрелками или Ї в зависимости от знака спинового квантового числа.

С учетом структуры электронных конфигураций атомов все известные элементы в соответствии со значением орбитального квантового числа последнего заполняемого подуровня можно разбить на четыре группы: s –элементы, р-элементы, d-элементы, f-элементы.

Основные типы химической связи. Характеристики химической связи. Энергия связи. Длина связи

При образовании химической связи происходит перераспределение в пространстве электронных плотностей, первоначально принадлежавших разным атомам. Поскольку наименее прочно связаны с ядром электроны внешнего уровня, то этим электронам принадлежит главная роль в образовании химической связи. Количество химических связей, образованных данным атомом в соединении, называют валентностью. Электроны, принимающие участие в образовании химической связи, называются валентными: у s- и р элементов — это внешние электроны, у d- элементов — внешние (последние) s-электроны и предпоследние d-электроны. С энергетической точки зрения наиболее устойчивым является атом, на внешнем уровне которого содержится максимальное число электронов (2 и 8 электронов). Такой уровень называют завершенным. Завершенные уровни отличаются большой прочностью и характерны для атомов благородных газов, поэтому при обычных условиях они находятся в состоянии химически инертного одноатомного газа.

У атомов других элементов внешние энергетические уровни незавершенные. В процессе хим реакции осуществляется завершение внешних уровней, что достигается либо присоединением, либо отдачей электронов, а также образованием общих электронных пар. Эти способы приводят к образованию двух основных типов связи: ковалентной и ионной. Таким образом, при образовании молекулы каждый атом стремится приобрести устойчивую внешнюю электронную оболочку: либо двухэлектронную (дублет), либо восьми-злектромную (октет). Эта закономерность положена в основу теории образования химической связи. Образование химической связи за счет завершения внешних уровней в образующих связь атомах сопровождается выделением большого количества энергии, то есть возникновение химической связи всегда протекает экзотермически, поскольку оно приводит к появлению новых частиц (молекул), обладающих при обычных условиях большей устойчивостью, а следовательно, они меньшей энергией, чем у исходных. Одним из существенных показателей, определяющих какая связь образуется между атомами, является электроотрицательность, то есть способность атомом притягивать к себе электроны от других атомов. Электроотрицательность атомов элементов изменяется постепенно: в периодах периодической системы слева направо ее значение возрастает а в группах сверху вниз — уменьшается.

Смотрите так же:

  • Flash player запрашивает разрешение Почему необходимо отвечать на этот вопрос? У кого есть доступ к этим данным? Параметры конфиденциальности и дискового пространства уже установлены в обозревателе. Как эти параметры взаимодействуют с параметрами проигрывателя Flash Player? Общеизвестно, что […]
  • Алименты на 4 детей сколько процентов Назначение и взыскание алиментов на 4 детей предусмотрено 13 главой Семейного кодекса. Тем не менее, по поводу размера выплат на троих и более детей часто возникают споры. Правда, предусмотренные в Трудовом кодексе ограничения не относятся к алиментам. И в […]
  • Любовь и наказания в контакте Любовь и наказание / Ask ve Ceza Все серии смотреть онлайн на русском языке Этот сериал поведает нам еще одну историю молодой женщины которая в один прекрасный момент потеряла веру в такие прекрасные вещи в жизни как верность и настоящая любовь. Так как за […]
  • Как оформить романтический стол Романтический вечер на двоих — и пусть весь мир подождёт! Отношения двух влюблённых всегда полны романтики. А где, как не во время романтического вечера, лучше всего выразить свои чувства, признаться в любви и даже, может быть, сделать предложение руки и […]
  • Второе двойное гражданство Список стран, с которыми можно оформить двойное гражданство в России в 2018 году Конституция гарантирует гражданам Российской Федерации право самостоятельно определять место, где они хотят жить и работать. Разумеется, это не означает отмену границ и правил […]
  • Чем отмыть зеркала без разводов Как помыть зеркало без разводов? Чистим до блеска Если уж взялся мыть зеркало, хочется довести результат работы до совершенства, чтобы зеркало было идеально чистым, сияющим, без разводов. Отчего бывают разводы на зеркале? Во-первых, разводы возникают из-за […]
  • Образец приказ на первую подпись Бесплатная консультация юриста не выходя из дома Чтобы получить бесплатную консультацию юриста вы можете позвонить по телефону(сверху) или обратиться через форму в правом нижнем углу Это сервис бесплатных юридических консультаций онлайн. Вы можете задать […]
  • Независимая экспертиза фз 44 Экспертиза по государственным закупкам (в рамках ФЗ №44) Экспертиза согласно Федерального закона от 05.04.2013 N 44-ФЗ "О контрактной системе в сфере закупок товаров, работ, услуг для обеспечения государственных и муниципальных […]