Правило ленца 4 случая

fizika / Физика билеты на экзамены / б (7) / 7

7..Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.

Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него.

Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток,

Согласно закону электромагнитной индукции Фарадея (в СИ):

—электродвижущая сила, действующая вдоль произвольно выбранного контура,

—магнитный потокчерез поверхность, натянутую на этот контур.

Знак «минус» в формуле отражает правило Ленца, названное так по имени русского физика Э. Х. Ленца:

Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток.

Для катушки, находящейся в переменном магнитном поле, закон Фарадея можно записать следующим образом:

— электродвижущая сила,

— число витков,

— магнитный поток через один виток,

—потокосцеплениекатушки.

Правило Ленца

Правило Ленца определяет направление индукционного тока и гласит:

Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

Физическая суть правила

Согласно закону электромагнитной индукции Фарадея при изменении магнитного потока , пронизывающего электрический контур, в нём возбуждаетсяток, называемый индукционным. Величина электродвижущей силы, ответственной за этот ток, определяется уравнением [1] :

где знак «минус» означает, что ЭДС индукции действует так, что индукционный ток препятствует изменению потока. Этот факт и отражён в правиле Ленца.

Правило Ленца носит обобщённый характер и справедливо в различных физических ситуациях, которые могут отличаться конкретным физическим механизмом возбуждения индукционного тока. Так, если изменение магнитного потока вызвано изменением площади контура (например, за счёт движения одной из сторон прямоугольного контура), то индукционный ток возбуждается силой Лоренца, действующей на электроны перемещаемого проводника в постоянном магнитном поле. Если же изменение магнитного потока связано с изменение величины внешнего магнитного поля, то индукционный ток возбуждается вихревым электрическим полем, появляющимся при изменении магнитного поля. Однако в обоих случаях индукционный ток направлен так, чтобы скомпенсировать изменение потока магнитного поля через контур.

Если внешнее магнитное поле, пронизывающее неподвижный электрический контур, создаётся током, текущим в другом контуре, то индукционный ток может оказаться направлен как в том же направлении, что и внешний, так и в противоположном: это зависит от того, уменьшается или увеличивается внешний ток. Если внешний ток увеличивается, то растёт создаваемое им магнитное поле и его поток, что приводит к появлению индукционного тока, уменьшающего это увеличение. В этом случае индукционный ток направлен в сторону, противоположную основному. В обратном случае, когда внешний ток уменьшается со временем, уменьшение магнитного потока приводит к возбуждению индукционного тока, стремящегося увеличить поток, и этот ток направлен в ту же сторону, что и внешний ток.

Электромагнитная индукция: Правило Ленца

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур. Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура (рис. 4.20.1).

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м2:

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца (1833 г.). Рис. 4.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

На свободные заряды на этом участке контура действует сила Лоренца. Одна из составляющих этой силы, связанная с переносной скоростью зарядов, направлена вдоль проводника. Эта составляющая указана на рис. 4.20.3. Она играет роль сторонней силы. Ее модуль равен

Работа силы FЛ на пути l равна

По определению ЭДС

В других неподвижных частях контура сторонняя сила равна нулю. Соотношению для инд можно придать привычный вид. За времы Δt площадь контура изменяется на ΔS = lυΔt. Изменение магнитного потока за это время равно ΔΦ = BlυΔt. Следовательно,

Для того, чтобы установить знак в формуле, связывающей инд и нужно выбрать согласованные между собой по правилу правого буравчика направление нормали и положительное направление обхода контура как это сделано на рис. 4.20.1 и 4.20.2. Если это сделать, то легко прийти к формуле Фарадея. Если сопротивление всей цепи равно R, то по ней будет протекать индукционный ток, равный Iинд = инд/R. За время Δt на сопротивлении R выделится джоулево тепло (см. § 4.11)

Возникает вопрос: откуда берется эта энергия, ведь сила Лоренца работы не совершает! Этот парадокс возник потому, что мы учли работу только одной составляющей силы Лоренца. При протекании индукционного тока по проводнику, находящемуся в магнитном поле, на свободные заряды действует еще одна составляющая силы Лоренца, связанная с относительной скоростью движения зарядов вдоль проводника. Эта составляющая ответственна за появление силы Ампера . Для случая, изображенного на рис. 4.20.3, модуль силы Ампера равен FA = IBl. Сила Ампера направлена навстречу движения проводника; поэтому она совершает отрицательную механическую работу. За время Δt эта работа Aмех равна

Движущийся в магнитном поле проводник, по которому протекает индукционный ток, испытывает магнитное торможение. Полная работа силы Лоренца равна нулю. Джоулево тепло в контуре выделяется либо за счет работы внешней силы, которая поддерживает скорость проводника неизменной, либо за счет уменьшения кинетической энергии проводника. 2.

Вторая причина изменения магнитного потока, пронизывающего контур, – изменение во времени магнитного поля при неподвижном контуре. В этом случае возникновение ЭДС индукции уже нельзя объяснить действием силы Лоренца. Электроны в неподвижном проводнике могут приводиться в движение только электрическим полем. Это электрическое поле порождается изменяющимся во времени магнитным полем. Работа этого поля при перемещении единичного положительного заряда по замкнутому контуру равна ЭДС индукции в неподвижном проводнике. Следовательно, электрическое поле, порожденное изменяющимся магнитным полем, не является потенциальным.

Его называют вихревым электрическим полем. Представление о вихревом электрическом поле было введено в физику великим английским физиком Дж. Максвеллом (1861 г.). Явление электромагнитной индукции в неподвижных проводниках, возникающее при изменении окружающего магнитного поля, также описывается формулой Фарадея. Таким образом, явления индукции в движущихся и неподвижных проводниках протекают одинаково, но физическая причина возникновения индукционного тока оказывается в этих двух случаях различной: в случае движущихся проводников ЭДС индукции обусловлена силой Лоренца; в случае неподвижных проводников ЭДС индукции является следствием действия на свободные заряды вихревого электрического поля, возникающего при изменении магнитного поля.

Правило ленца 4 случая

Цель урока: научиться определять направление индукционного тока; на примере правила Ленца сформулировать представление о фундаментальности ЗСЭ; разъяснить сущность явления самоиндукции; вывести формулу для расчета энергии магнитного поля, выяснить физический смысл этой формулы.

Проверка домашнего задания.
Изложение нового материала.
Закрепление.
Домашнее задание.

Проверка домашнего задания – было задано подготовить развернутый ответ на следующие элементы знаний: а) явление электромагнитной индукции (определение, история открытия – автор открытия, дата, опыты; определение магнитного потока); б) объяснение возникновения индукционного тока (определение вихревого поля, его отличие от электростатического, закон электромагнитной индукции); в) решение двух задач на закон электромагнитной индукции (Степанова, № 121, 1123). Форма проверки может быть любой, в зависимости от уровня подготовленности класса.
План изложения нового материала:

1. Направление индукционного тока.
2. Правило Ленца и ЗСЭ.
3. Явление самоиндукции.
4. ЭДС самоиндукции.
5. Индуктивность.
6. Применение и учет самоиндукции в технике.
7. Энергия магнитного поля тока.

Направление индукционного тока.

Вопросы к учащимся для актуализации прежних знаний:

Назвать две серии опытов Фарадея по исследованию явления электромагнитной индукции (возникновение индукционного тока в катушке при вдвигании и выдвигании магнита или катушки с током; возникновение индукционного тока в одной катушке при изменении тока в другой путем замыкания-размыкания цепи или использования реостата).
Зависит ли направление отклонения стрелки гальванометра от направления движения магнита относительно катушки? (зависит: при приближении магнита к катушке стрелка отклоняется в одну сторону, при удалении магнита – в другую).
Чем отличается (судя по показаниям гальванометра) индукционный ток, возникающий в катушке при приближении магнита, от тока, возникающего при удалении магнита (при одинаковой скорости движения магнита)? (ток отличается направлением).

Таким образом, при движении магнита относительно катушки направление отклонения стрелки гальванометра (а, значит, и направление тока) может быть различным (слайд 5).

Сформулируем при помощи опыта Ленца правило нахождения направления индукционного тока (видеоролик «Демонстрация явления электромагнитной индукции»). Объяснение опыта Ленца (слайд 6): Если приближать магнит к проводящему кольцу, то оно начнет отталкиваться от магнита. Это отталкивание можно объяснить только тем, что в кольце возникает индукционный ток, обусловленный возрастанием магнитного потока через кольцо, а кольцо с током взаимодействует с магнитом.

Правило Ленца и закон сохранения энергии (слайд 7).

Если магнитный поток через контур возрастает, то направление индукционного тока в контуре таково, что вектор магнитной индукции созданного этим током поля направлен противоположно вектору магнитной индукции внешнего магнитного поля.

Если магнитный поток через контур уменьшается, то направление индукционного тока таково, что вектор магнитной индукции созданного этим током поля сонаправлен вектору магнитной индукции внешнего поля.

Формулировка правила Ленца (слайд 8): индукционный ток имеет такое направление, что созданный им магнитный поток всегда стремится скомпенсировать то изменение магнитного потока, которое вызвало данный ток.

Правило Ленца является следствием закона сохранения энергии.

Рассмотрим пример проявления правила Ленца в жизни (слайд 9) – парение магнита над сверхпроводящей чашей. Кратко объяснить происходящее можно так: магнит падает; возникает переменное магнитное поле; возникает вихревое электрическое поле; в сверхпроводнике возникают незатухающие кольцевые токи; согласно правилу Ленца направление этих токов таково, что магнит отталкивается от сверхпроводника; магнит «парит» над чашей.

Прежде, чем рассмотреть явление самоиндукции, вспомним, в чем заключается суть явления электромагнитной индукции – это возникновение индукционного тока в замкнутом контуре при изменении магнитного потока, пронизывающего этот контур. Рассмотрим один из вариантов опытов Фарадея (слайд 10): Если в цепи, содержащей замкнутый контур (катушку) менять силу тока, то в самом контуре возникнет ещё и индукционный ток. Этот ток также будет подчиняться правилу Ленца.

Рассмотрим опыт по замыканию цепи, содержащей катушку (слайд 11). При замыкании цепи с катушкой определенное значение силы тока устанавливается лишь спустя некоторое время.

Определение самоиндукции (слайд 12): САМОИНДУКЦИЯ – возникновение вихревого электрического поля в проводящем контуре при изменении силы тока в нем; частный случай электромагнитной индукции.
Вследствие самоиндукции замкнутый контур обладает «инертностью»: силу тока в контуре, содержащем катушку, нельзя изменить мгновенно.

ЭДС самоиндукции (слайд 13). Какова формула закона электромагнитной индукции?

(ℰi = — ). Если магнитное поле создано током, то можно утверждать, что Ф

I или Ф=LI , где L – индуктивность контура (или коэффициент самоиндукции). Тогда закон электромагнитной индукции в случае самоиндукции примет вид: ℰsi = — = — или ℰsi = — L (формула для расчета ЭДС самоиндукции).

Индуктивность (слайд 14).

Если из формулы для расчета ЭДС самоиндукции выразить коэффициент пропорциональности L, получим: L=ℰsi / . Затем приравняем к единице значения величин, которые мы непосредственно можем задать – величину скорости изменения силы тока 1 ампер в секунду. Получим формулу, отражающую физический смысл коэффициента самоиндукции (индуктивности): индуктивность контура численно равна ЭДС самоиндукции, возникающей при изменении силы тока на 1 А за 1 с.

Единицы измерения индуктивности в системе СИ: [L] = 1 = 1 Гн (генри).

Применение и учет самоиндукции в технике (слайд 15).

Вследствие явления самоиндукции при размыкании цепей, содержащих катушки со стальными сердечниками (электромагниты, двигатели, трансформаторы) создается значительная ЭДС самоиндукции и может возникнуть искрение или даже дуговой разряд. В качестве домашнего задания предлагаю (по желанию) подготовить презентацию на тему «Как устранить нежелательную самоиндукцию при размыкании цепи?».

Энергия магнитного поля (слайд 16):

Вспомним опыт, подтверждающий существование явления самоиндукции: при замыкании цепи лампочка вспыхивала не сразу, но и при размыкании цепи с катушкой лампочка вместо того, чтобы, погаснуть, на короткое время вспыхивала. Очевидно, для вспышки лампочки необходима энергия. И энергия эта запасается в катушке в виде энергии магнитного поля. Для вывода энергии магнитного поля используем аналогию между установлением в цепи электрического тока величиной I и процессом набора телом скорости V.

1. Установление в цепи тока I происходит постепенно.

1. Достижение телом скорости V происходит постепенно.

2. Для достижения силы тока I необходимо совершить работу.

2. Для достижения скорости V необходимо совершить работу.

3. Чем больше L, тем медленнее растет I.

3. Чем больше m, тем медленнее растет V.

Закрепление (слайд 17) — вопросы 1 — 8 на стр. 113 учебника.
Домашнее задание (слайд 18) — § 15, задачник Степановой № 1146, 1153, 1157.

По желанию – презентация на темe: «Как устранить нежелательную самоиндукцию при размыкании цепи?».

Электромагнитная индукция. Правило Ленца. Лекция № 16

Электромагнитная индукция. Правило Ленца. Лекция № 16 — Лекция, раздел Философия, Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория Явление Электромагнитной Индукции Было Открыто Выдающимся Английским Физиком .

Явление электромагнитной индукции было открыто выдающимся английским физиком М. Фарадеем в 1831 г. Оно заключается в возникновении электрического тока в замкнутом проводящем контуре при изменении во времени магнитного потока, пронизывающего контур.

Магнитным потоком Φ через площадь S контура называют величину

где B – модуль вектора магнитной индукции, α – угол между вектором и нормалью к плоскости контура (рис. 4.20.1).

Определение магнитного потока нетрудно обобщить на случай неоднородного магнитного поля и неплоского контура. Единица магнитного потока в системе СИ называется вебером (Вб). Магнитный поток, равный 1 Вб, создается магнитным полем с индукцией 1 Тл, пронизывающим по направлению нормали плоский контур площадью 1 м 2 :

Фарадей экспериментально установил, что при изменении магнитного потока в проводящем контуре возникает ЭДС индукции Eинд, равная скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой со знаком минус:

Опыт показывает, что индукционный ток, возбуждаемый в замкнутом контуре при изменении магнитного потока, всегда направлен так, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызывающего индукционный ток. Это утверждение называется правилом Ленца (1833 г.).

Рис. 4.20.2 иллюстрирует правило Ленца на примере неподвижного проводящего контура, который находится в однородном магнитном поле, модуль индукции которого увеличивается во времени.

Эта тема принадлежит разделу:

Молекулярная физика и термодинамика. Лекция №1 Молекулярно-кинетическая теория

Молекулярно кинетическая теория. Основные положения МКТ В основе. Электродинамика Лекция.

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Электромагнитная индукция. Правило Ленца. Лекция № 16

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные положения МКТ
Молекулярно-кинетической теорией называют учение о строении и свойствах вещества на основе представления о существовании атомов и молекул как наименьших частиц химического вещества. В осно

Основное уравнение МКТ газов. Температура
Простейшей моделью молекулярно-кинетической теории является модель идеального газа. В кинетической модели идеального газа молекулы рассматриваются как идеально упругие шарики, взаимодействующие меж

Уравнение состояния идеального газа. Изопроцессы лекция№2
Соотношение p = nkT, связывающее давление газа с его температурой и концентрацией молекул, получ

Внутренняя энергия. Количество теплоты. Работа в термодинамике лекция №3 Основы термодинамики
Термодинамика – это наука о тепловых явлениях. В противоположность молекулярно-кинетической теории, которая делает выводы на основе представлений о молекулярном строении вещества, термодинамика исх

Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары лекция №4
Любое вещество при определенных условиях может находиться в различных агрегатных состояниях – твердом, жидком и газообразном. Переход из одного состояния в другое называется фазовым переходом. Испа

Свойства жидкостей. Поверхностное натяжение Лекция №5
Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла

Кристаллические и аморфные тела Лекция №6
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса – аморфные и кристаллические тела. Характерной особенностью аморфных тел является их изотропно

Деформация
В твердых телах – аморфных и кристаллических – частицы (молекулы, атомы, ионы) совершают тепловые колебания около положений равновесия, в которых энергия их взаимодействия минимальна. При увеличени

Электрический заряд. Закон Кулона
Подобно понятию гравитационной массы тела в механике Ньютона, понятие заряда в электродинамике является первичным, основным понятием. Электрический заряд – это физическая величина, характе

Электрическое поле Работа, совершаемая силами электрического поля. Лекция № 8
По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле. Это поле оказывает силов

Работа в электрическом поле. Потенциал
При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 4.4.1):

Проводники и диэлектрики в электрическом поле
Вещество, внесенное в электрическое поле, может существенно изменить его. Это связано с тем, что вещество состоит из заряженных частиц. В отсутствие внешнего поля частицы распределяются внутри веще

Электроемкость. Конденсаторы Лекция №9
Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и

Энергия электрического поля
Опыт показывает, что заряженный конденсатор содержит запас энергии. Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрический ток. Закон Ома Лекция №10
Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных за

Последовательное и параллельное соединение проводников
Проводники в электрических цепях могут соединяться последовательно и параллельно. При последовательном соединении проводников (рис. 4.9.1) сила тока во всех проводниках одинакова:

Правила Кирхгофа для разветвленных цепей
Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей. В

Работа и мощность электрического тока .Закон Ома для полной цепи. Лекция №11
При протекании тока по однородному участку цепи электрическое поле совершает работу. За время Δt по цепи протекает заряд Δq = IΔt. Электрическое поле на выделенном учестке совершает

Электрический ток в металлах
Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику не происходит переноса

Электрический ток в полупроводниках
По значению удельного электрического сопротивления полупроводники занимают промежуточное место между хорошими проводниками и диэлектриками. К числу полупроводников относятся многие химические элеме

Электронно-дырочный переход. Транзистор
В современной электронной технике полупроводниковые приборы играют исключительную роль. За последние три десятилетия они почти полностью вытеснили электровакуумные приборы. В любом полупро

Электрический ток в электролитах Лекция №12
Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отри

Магнитное взаимодействие токов. Магнитное поле. Действие магнитного поля на проводник с током. Лекция №14
Магнитные явления были известны еще в древнем мире. Компас был изобретен более 4500 лет тому назад. Он появился в Европе приблизительно в XII веке новой эры. Однако только в XIX веке была обнаружен

Сила Лоренца
Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B, F = IBΔl sin α

Магнитное поле в веществе
Экспериментальные исследования показали, что все вещества в большей или меньшей степени обладают магнитными свойствами. Если два витка с токами поместить в какую-либо среду, то сила магнитного взаи

Самоиндукция. Энергия магнитного поля
Самоиндукция является важным частным случаем электромагнитной индукции, когда изменяющийся магнитный поток, вызывающий ЭДС индукции, создается током в самом контуре. Если ток в рассматриваемом конт

Электромагнитные колебания и волны. Лекция №17
Колебательные и волновые процессы, изучаемые в различных разделах физики, проявляют удивительную общность закономерностей. Колебания груза на пружине и процессы в электрическом колебательном контур

Квазистационарные процессы. RC- и RL-цепи
В цепях постоянного тока распределение электрических зарядов на проводниках и токов на участках цепи стационарно, то есть неизменно во времени. Электромагнитное поле в таких цепях состоит из электр

RLC-контур. Свободные колебания
В электрических цепях, так же как и в механических системах, таких как груз на пружине или маятник, могут возникать свободные колебания. Простейшей электрической системой, способной совершать свобо

Вынужденные колебания. Переменный ток. Лекция №18
Процессы, возникающие в электрических цепях под действием внешнего периодического источника тока, называются вынужденными колебаниями. Вынужденные колебания, в отличие от собственных колеб

Закон Ома для цепи переменного тока. Мощность. Лекция № 19
Когда были выведены соотношения, связывающие амплитуды переменных токов и напряжений на резисторе, конденсаторе и катушке индуктивности:

Трансформаторы. Передача электрической энергии
Среди приборов переменного тока, нашедших широкое применение в технике, значительное место занимают трансформаторы. Принцип действия трансформаторов, применяемых для повышения или п

Электромагнитные волны . Изобретение радио А.С.Поповым Лекция №20
Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл проанализировал все известные к тому времени законы электродинамики

Основные законы геометрической оптики
Основные законы геометрической оптики были известны задолго до установления физической природы света. Закон прямолинейного распространения света: в оптически однородной сре

Зеркала
Простейшим оптическим устройством, способным создавать изображение предмета, является плоское зеркало. Изображение предмета, даваемое плоским зеркалом, формируется за счет лучей, отраженных от зерк

Развитие представлений о природе света Лекция №21
Первые представления о природе света возникли у древних греков и египтян. По мере изобретения и совершенствования различных оптических приборов (параболических зеркал, микроскопа, зрительной трубы)

Интерференция света. Лекция № 22
Интерференция – одно из ярких проявлений волновой природы света. Это интересное и красивое явление наблюдается при определенных условиях при наложении двух или нескольких световых пучков. Интенсивн

Дифракция света
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может захо

Спектральные приборы. Дифракционная решетка Лекция №23
В состав видимого света входят монохроматические волны с различными значениями длин волн. В излучении нагретых тел (нить лампы накаливания) длины волн непрерывно заполняют весь диапазон видимого св

Опыт Ньютона
Ньютон направил белый луч на стеклянную призму. Как только видимый свет попадает в призму, он преломляется и разлагается в радужную полоску, которая называется спектр, Бел

Фотоэффект. Фотоны Лекция № 24
Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было вы

Физика атома и атомного ядра Лекция № 25
Представление об атомах как неделимых мельчайших частицах вещества возникло еще в античные времена, но только в XVIII веке трудами А. Лавуазье, М. В. Ломоносова и других ученых была доказана реальн

Опыт Резерфорда. Ядерная модель атома
Первая попытка создания модели атома на основе накопленных экспериментальных данных принадлежит Дж. Томсону (1903 г.). Он считал, что атом представляет собой электронейтральную систему шарообразной

Квантовые постулаты Бора
Планетарная модель атома, предложенная Резерфордом, – это попытка применения классических представлений о движении тел к явлениям атомных масштабов. Эта попытка оказалась несостоятельной. Классичес

Методы регистрации заряженных частиц
В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянно

Энергия связи ядер Лекция № 26
Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов. Силы, удержи

Элементарные частицы
Существование элементарных частиц физики обнаружили при изучении ядерных процессов, поэтому вплоть до середины XX века физика элементарных частиц была разделом ядерной физики. В настоящее время физ

«Если металлический проводник передвигается вблизи гальванического тока или вблизи магнита, то в нем возбуждается гальванический ток такого направления, которое вызывало бы движение покоящегося провода в направлении, прямо противоположном направлению движения, навязанного здесь проводу извне, в предположении, что находящийся в покое провод может двигаться только в направлении этого последнего движения или прямо противоположном». Профессор петербургского университета Э.Х.Ленц, 1833 год.

Правило Ленца основано на обобщении опытов по электромагнитной индукции .

В сжатой форме правило Ленца можно сформулировать так:

возникающий в замкнутом проводнике индукционный ток имеет такое направление, чтобы препятствовать изменению потока магнитной индукции, которое его вызывает .

То есть индукционный ток создает через площадь, ограниченную контуром собственный поток магнитной индукции, компенсирующий изменение потока магнитной индукции, которое его вызывает:

dФ = ( В , d S ) Ю dФ = B Ч dS Ч cos a ,

где a — угол между вектором магнитной индукции внешнего поля и нормалью к плоскости витков соленоида.

Рассмотрим некоторые примеры.

1. Возьмем соленоид (катушку) C , замкнутый через гальванометр G (рис.1).

Возникновение индукционного тока в соленоиде при приближении у нему постоянного магнита

Будем приближать к одному из его концов постоянный магнит, например, северным полюсом. В соленоиде возникнет электрический ток, который обнаружится по отклонению стрелки гальванометра. Направлен индукционный ток против часовой стрелки, если смотреть на соленоид со стороны магнита.

При приближении магнита к соленоиду поток вектора магнитной индукции, пронизывающий витки соленоида, возрастает, так как увеличивается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено из соленоида наружу (правило буравчика), то есть компенсирует нарастание поля магнита. Соответствует правилу Ленца.

2. Возьмем соленоид C , замкнутый через гальванометр G . Будем удалять от одного из его концов постоянный магнит (рис. 2).

Возникновение индукционного тока в соленоиде при удалении от него постоянного магнита

При удалении магнита от соленоида поток вектора магнитной индукции, пронизывающий витки соленоида, убывает, так как уменьшается магнитная индукция поля магнита. Магнитное поле индукционного тока в соленоиде направлено внутрь соленоида (правило буравчика), то есть компенсирует убывание поля магнита. Соответствует правилу Ленца.

Очевидно, что результат опытов не изменится, если магнит будет неподвижен, а соленоид перемещаться.

Анализируя результаты этих двух опытов, можно сделать еще один вывод: при приближении северного полюса магнита к соленоиду индукционный ток создает магнитное поле, индукция которого направлена навстречу индукции магнитного поля магнита, и, следовательно, магнит и соленоид отталкиваются, то есть между ними возникает сила противодействующая движению магнита, которое вызывает возникновение индукционного тока. При удалении магнита магнит и соленоид притягиваются, то есть снова между ними возникает сила противодействующая движению магнита.

Правило Ленца является следствием закона сохранения энергии. Действительно, индукционные токи, как всякие другие электрические токи, совершают некоторую работу. Значит при движении замкнутого проводника (соленоида) в магнитном поле должна быть произведена дополнительная работа внешних сил. Эта и есть та работа, которая возникает за счет сил препятствующих движению магнита.

Изменение потока через витки соленоида C наблюдается и при рассмотрении относительного движения магнита южным полюсом к соленоиду C , замены магнита соленоидом или витком с током, замыкания и размыкания цепи такого соленоида (или витка), а также взаимные повороты соленоида C и элемента, создающего магнитное поле.

Время инициации (log t o от -10 до 2);

Время существования (log t c от 15 до 15);

Время деградации (log t d от -10 до 2);

Время оптимального проявления (log t k от -10 до 2).

Технические реализации эффекта

Техническая реализация проверки правила Ленца

Простейшая техническая реализация экспериментальной проверки правила Ленца описана в разделе “сущность”, см. рис. 1, 2 и комментарии к ним.

Правило Ленца применяется при расчетах и проектировании электронного и электромеханического оборудования.

1. Фриш С.Э., Тиморева А.В. Курс общей физики.- М., Л.: Государственное технико-теоретическое издательство, 1952.- Т.2.- С.475-479.

2. Калашников С.Г. Электричество.- М.: Наука, 1977.- С.179-182.

  • магнитная индукция
  • электромагнитная индукция
  • магнитный поток
  • поток вектора магнитной индукции
  • замкнутый контур
  • замкнутый проводник
  • магнит
  • магнитное поле
  • электрический ток
  • индукционный ток
  • соленоид
  • виток
  • правило Ленца
  • закон Ленца
  • катушка

3. Електромагнітне поле

Тема. Правило Ленца

Мета уроку: навчити учнів визначати напрямок індукційного струму.

Тип уроку: урок вивчення нового матеріалу.

1. Потік магнітної індукції.

2. Явище електромагнітної індукції.

Вивчення нового матеріалу

2. Алгоритм розв’язання задач.

Закріплення вивченого матеріалу

1. Якісні питання.

2. Навчаємося розв’язувати задачі.

ВИВЧЕННЯ НОВОГО МАТЕРІАЛУ

1. Як визначати напрямок індукційного струму?

З ряду дослідів випливає, що в різних випадках напрямок індукційного струму може бути різним: відкидання стрілки гальванометра в деяких дослідах відбувалося в одну сторону, а в інших – у протилежний. Знайдемо загальне правило, за яким визначаємо напрямок індукційного струму.

Якщо наближати магніт до провідного кільця, то воно почне відштовхуватися від магніту. Це відштовхування можна пояснити тільки тим, що в кільці виникає індукційний струм, обумовлений зростанням магнітного потоку через кільце, а кільце зі струмом взаємодіє з магнітом.

Інакше кажучи, якщо магнітний потік через контур зростає, то напрямок індукційного струму в контурі такий, що вектор магнітної індукції створеного цим струмом поля спрямований протилежно до вектора магнітної індукції зовнішнього магнітного поля.

У разі ж видалення магніту в провідному кільці виникає індукційний струм такого напрямку, що кільце притягається до магніту. Або інакше: якщо магнітний потік через контур зменшується, то напрямок індукційного струму такий, що вектор магнітної індукції створеного цим струмом поля спрямований так само, як вектор магнітної індукції зовнішнього магнітного поля.

Загальним у цих дослідах є те, що індукційний струм має такий напрямок, що створений ним магнітний потік завжди намагається компенсувати ту зміну магнітного потоку, що спричинив цей струм.

Ця закономірність називається правилом Ленца, тому що вона була встановлена дослідним шляхом російським фізиком Емілієм Християновичем Ленцем через два роки після відкриття Фарадеєм явища електромагнітної індукції.

Часто буває зручніше скористатися іншим формулюванням правила Ленца: у всіх випадках електромагнітної індукції струми й сили напрямлені так, щоб протидіяти причині їх виникнення.

Правило Ленца має глибокий фізичний зміст – воно виражає закон збереження енергії. Для створення індукційного струму необхідна енергія, отже, слід виконати додаткову роботу зовнішніх сил. Після наближення магніту до контуру або віддалення його від контуру завжди виникає сила, що перешкоджає рухові. Щоб подолати цю протидію, виконується робота.

2. Алгоритм розв’язання задач

Під час розв’язання задач на правило Ленца слід дотримувати такого алгоритму:

1) визначити напрямок вектора магнітної індукції зовнішнього магнітного поля;

2) з умови завдання з’ясувати, збільшується чи зменшується магнітний потік, що пронизує контур;

3) визначити напрямок вектора ‘ магнітної індукції магнітного поля індукційного струму: якщо магнітний потік збільшується, то ; якщо зменшується, то ;

4) визначити напрямок індукційного струму, скориставшись правилом правої руки.

Як приклад розглянемо розв’язання такого завдання.

Котушки A й C надягли на загальний сердечник. Визначте напрямок індукційного струму в котушці A під час переміщення повзунка реостата вліво.

1) Покажемо напрямок електричного струму в котушці C й, скориставшись правилом правої руки, визначимо напрямок магнітної індукції зовнішнього магнітного поля (магнітного поля струму в котушці C).

2) Після переміщення повзунка реостата вліво опір реостата зменшується, отже, відповідно до закону Ома, сила струму в колі котушки C збільшується, тому збільшується й магнітна індукція B зовнішнього магнітного поля, створеного цим струмом. Оскільки B, ті й збільшується магнітний потік, що пронизує котушку

3) Оскільки Ф, то вектор ‘ магнітної індукції магнітного поля струму в котушці A напрямлений протилежно до вектора магнітної індукції зовнішнього магнітного поля:

4) Знаючи напрямок вектора й скориставшись правилом правої руки, визначимо напрямок індукційного струму в котушці A.

Відповідь: індукційний струм у котушці A напрямлений по передній стінці угору.

ЗАКРІПЛЕННЯ ВИВЧЕНОГО МАТЕРІАЛУ

1). Якісні питання

1. Смуговий магніт падає крізь дротову котушку. Порівняйте час падіння у випадках, коли котушка замкнута й розімкнута.

2. У дві однакові котушки вводять із однаковою швидкістю однакові магніти. Які виконано роботи, якщо одна котушка замкнута на гальванометр, а інша розімкнута?

2). Навчаємося розв’язувати задачі

1. Для кожного випадку (див. рисунок) визначте напрямок індукційного струму, що виникає в замкнутому провідному кільці.

2. Визначте напрямок індукційного струму в контурі А, поміщеному в магнітне поле контуру Б (див. рисунок), у випадку:

А) замикання ключа;

Б) розмикання ключа;

В) переміщення повзунка реостата вправо;

Г) переміщення повзунка реостата вліво.

3. Напрямок індукційного струму в котушці A показано на рисунку а. Визначте, коли виник індукційний струм – під час замикання або розмикання ключа.

4. Алюмінієве кільце, вільно надягнуте на сталевий сердечник, у випадку замикання ключа підскакує нагору (див. рисунок б). Поясніть причину цього явища. Чи буде підскакувати кільце в разі розмикання ключа?

ЩО МІ ДІЗНАЛИСЯ НА УРОЦІ

– Правило Ленца: індукційний струм має такий напрямок, що створений ним магнітний потік завжди намагається компенсувати ту зміну магнітного потоку, яку спричинив цей струм.

1. Підр-1: § 21 (п. 4, 5); підр-2: § 12 (п. 1, 2).

В 1834 году русский академик Э. Х. Ленц, известный своими многочисленными исследованиями в области электромагнитных явлений, дал универсальное правило для определения направления индуктированной электродвижущей силы (ЭДС) в проводнике. Это правило, известное как правило Ленца, может быть сформулировано так:

Направление индуктированной ЭДС всегда таково, что вызванный ею ток и его магнитное поле имеют такое направление, что стремятся препятствовать причине, порождающей эту индуктированную ЭДС.

Справедливость формулировки правила Ленца подтверждается следующими опытами:

1. Если расположить проводник в магнитном поле так, как показано на рисунке 1, то при движении вниз проводник будет пересекать это магнитное поле. Тогда в проводнике индуктируется ЭДС, направление которой можно определить по правилу правой руки. В нашем случае направление индуктированной ЭДС, а стало быть и тока будет «к нам». Посмотрим теперь, как будет вести себя наш проводник с током в магнитном поле. Из предыдущих статей нам известно, что проводник с током из магнитного поля будет выталкиваться. Направление выталкивания определяется по правилу левой руки. В нашем случае сила выталкивания направлена вверх. Таким образом, индуктированный ток, взаимодействуя с магнитным полем, мешает движению проводника, то есть противодействует причине, которая его вызвала.

2. Для опыта соберем цепь, показанную на рисунке 2. Опуская постоянный магнит в катушку (северным полюсом вниз), заметим отклонение стрелки гальванометра. Опыт показывает, что направление индуктированного тока в катушке будет такое, как показано стрелками на рисунке 2, а. Пусть ему соответствует отклонение стрелки влево от среднего нулевого положения. Следовательно, катушка как бы превратилась в соленоид и указанное направление тока создает наверху ее северный полюс, а внизу – южный. Так как одноименные полюса магнита и соленоида будут отталкиваться, то индуктированный ток в катушке будет мешать движению постоянного магнита, то есть будет противодействовать причине, которая его вызвала.

Рисунок 2. Противодействие соленоида движению магнита:
а – вниз, б — вверх

Если мы будем вынимать постоянный магнит из катушки, то стрелка гальванометра отклонится вправо (рисунок 2, б). Этому отклонению стрелки гальванометра, как показывает опыт, соответствует направление индуктированного тока, показанное стрелками на рисунке 2, б, и противоположное направлению тока на рисунке 2, а.

Определяя полюса катушки по «правилу буравчика», найдем, что южный полюс будет теперь наверху катушки, а северный внизу. Разноименные полюса магнита и соленоида, притягиваясь, будут тормозить движение магнита. Значит, индуктированный ток опять будет противодействовать причине, которая его вызвала.

3. Замыкая цепь I (рисунок 3, а), пропустим ток по проводнику АБ. Направление тока показано на рисунке стрелками. Магнитное поле проводника АБ, созданное появившимся током, распространяясь во все стороны, будет пересекать проводник ВГ, и в цепи II возникает индуктированная ЭДС. Поскольку цепь II замкнута на гальванометр, в ней появится ток. Гальванометр в этом случае включен также, как и в предыдущем опыте.

Стрелка гальванометра, отклонившись влево, покажет, что ток через прибор идет сверху вниз. Сравнивая направление токов в проводниках АБ и ВГ, мы видим, что токи их направлены в разные стороны.

Как мы уже знаем, проводники, токи в которых направлены в разные стороны, отталкиваются один от другого. Поэтому проводник ВГ с индуктированным током будет стремиться оттолкнуться от проводника АБ (так же, как и проводник АБ от ВГ), устранить влияние поля проводника АБ и тем самым препятствовать причине, вызвавшей индуктированный ток.

Индуктированный ток в цепи II будет проходить непродолжительное время. Как только магнитный поток проводника АБ установится, прекратится пересечение проводника ВГ магнитным полем проводника АБ, ток в цепи II пропадет.

При размыкании цепи I исчезающий ток вызовет уменьшение магнитного поля, индукционные линии которого, пересекая проводник ВГ, создадут в нем индуктированный ток того же направления, что и в проводнике АБ (рисунок 3, б).

Нам известно, что проводники, в которых ток идет в одном направлении, притягиваются один к другому. Поэтому проводник ВГ будет стремиться протянуться к проводнику АБ, чтобы поддержать его убывающее магнитное поле.

4. Для следующего примера возьмем катушку, имеющую круглый сердечник, набранный из нарубленной стальной проволоки, на который свободно надето легкое алюминиевое кольцо (рисунок 4). В момент замыкания цепи по обмотке катушки начинает проходить электрический ток, создающий магнитное поле, индукционные линии которого, пересекая алюминиевое кольцо, индуктируют в нем ток. В момент включения катушки в алюминиевом кольце возникает индуктированный ток, направленный обратно току в витках катушки. Проводники имеющие разное направление индукционного тока отталкиваются. Поэтому в момент включения катушки алюминиевое кольцо подскакивает вверх.

Нам теперь известно, что при всяком изменении во времени магнитного потока, пронизывающего контур, в нем появляется индуктированная ЭДС, определяемая равенством:

Выражение в данной формуле представляет собою среднюю скорость изменения магнитного потока по времени. Чем меньше промежуток времени Δt, тем меньше вышеуказанная ЭДС отличается от ее действительного значения в данный момент времени. Знак минус, стоящий перед выражением , показывает направление индуктированной ЭДС, то есть учитывает правило Ленца.

При увеличении магнитного потока выражение будет положительным, а ЭДС – отрицательной. В этом и заключается правило Ленца: ЭДС и созданный ею ток противодействуют причине, которая их вызвала.

При равномерном изменении во времени магнитного потока выражение будет постоянно. Тогда абсолютное значение ЭДС в проводнике будет равно:

Размерность магнитного потока будет:

[Ф] = [e × t] = В × сек или вебер.

Если мы имеем не один проводник, а катушку, состоящую из w витков, то величина индуктированной ЭДС будет:

Произведение числа витков катушки на сцепленный с ними магнитный поток называется потокосцеплением катушки и обозначается буквой ψ. Поэтому закон электромагнитной индукции можно записать и в другой форме:

Источник: Кузнецов М.И., «Основы электротехники» — 9-е издание, исправленное — Москва: Высшая школа, 1964 — 560с.

Смотрите так же:

  • Саженцы правила посадки Правила посадки саженцев Здравствуйте, уважаемые друзья! Разберем сегодня правила посадки саженцев на садовом участке. 1. Очень важно перед посадкой не допустить подсыхания корневой системы саженца. Рекомендуется за 1 — 2 суток до начала посадки поместить […]
  • Возврат билета s7 промо Если у вас возникла ситуация, требующая возврата или обмена авиабилета, надо учитывать ряд нюансов. Для начала внимательно изучите ваш тариф, в котором указаны условия приобретения проездного документа и его использования. Далее обратите внимание на место и […]
  • Закон о ветеранах ст5 Федеральный закон "О ветеранах" Федеральный закон от 12 января 1995 г. N 5-ФЗ"О ветеранах" С изменениями и дополнениями от: 18 ноября 1998 г., 2 января, 4 мая, 27 декабря 2000 г., 8 августа, 30 декабря 2001 г., 25 июля, 27 ноября, 24 декабря 2002 г., 6 мая, […]
  • Закона сохранения информации Закон сохранения информации Автор: Владимир Поляков, RA3AAE Все статьи на CQHAM.RU Все статьи категории "В помощь радиолюбителю" "Ничего нет нового под Луной" (Экклезиаст) "Шила в мешке не утаишь" (Народная пословица) "И если, затворившись в пещере, […]
  • Архара амурская область суд Организация ООО "ДСМ-Архара" Адрес: АМУРСКАЯ ОБЛ.,РП АРХАРА,УЛ ПРИВОКЗАЛЬНАЯ, 33 Юридический адрес: 676740, АМУРСКАЯ ОБЛАСТЬ, РП АРХАРА, УЛ ПРИВОКЗАЛЬНАЯ, Д 33 ОКФС: 16 - Частная собственность ОКОГУ: 4210014 - Организации, учрежденные юридическими лицами […]
  • Приказ 531 от 30092011 Законодательная база Российской Федерации Бесплатная консультация Федеральное законодательство Главная ПРИКАЗ Минэкономразвития РФ от 30.09.2011 N 531 "ОБ УТВЕРЖДЕНИИ ТРЕБОВАНИЙ К ОПРЕДЕЛЕНИЮ ПЛОЩАДИ ЗДАНИЯ, ПОМЕЩЕНИЯ" "Российская газета", N 254, […]
  • Образец заявление на возврат ндфл в налоговую Актуально на: 14 февраля 2017 г. ​Образец заявления на возврат НДФЛ Мы рассказывали в отдельной консультации о перечне документов, представляемых в налоговую инспекцию при использовании имущественного налогового вычета. О заявлении на возмещение НДФЛ при […]
  • Правила хранения документов на бумажных носителях Храним документы в организации правильно Из материала, подготовленного экспертами службы Правового консалтинга ГАРАНТ, вы узнаете каковы сроки хранения документов бухгалтерского и налогового учета, а также особенности порядка их хранения. Документы […]