Правило ван-гофф

Правило ван-гофф

4. Влияние температуры на скорость химических реакций

Из качественных соображений понятно, что скорость реакций должна увеличиваться с ростом температуры, т.к. при этом возрастает энергия сталкивающихся частиц и повышается вероятность того, что при столкновении произойдет химическое превращение. Для количественного описания температурных эффектов в химической кинетике используют два основных соотношения — правило Вант-Гоффа и уравнение Аррениуса.

Правило Вант-Гоффа заключается в том, что при нагревании на 10 о С скорость большинства химических реакций увеличивается в 2 4 раза. Математически это означает, что скорость реакции зависит от температуры степенным образом:

, (4.1)

где — температурный коэффициент скорости ( = 24). Правило Вант-Гоффа является весьма грубым и применимо только в очень ограниченном интервале температур.

Гораздо более точным является уравнение Аррениуса, описывающее температурную зависимость константы скорости:

, (4.2)

где R — универсальная газовая постоянная; A — предэкспоненциальный множитель, который не зависит от температуры, а определяется только видом реакции; EAэнергия активации, которую можно охарактеризовать как некоторую пороговую энергию: грубо говоря, если энергия сталкивающихся частиц меньше EA, то при столкновении реакция не произойдет, если энергия превышает EA, реакция произойдет. Энергия активации не зависит от температуры.

Графически зависимость k(T) выглядит следующим образом:

При низких температурах химические реакции почти не протекают: k(T) 0. При очень высоких температурах константа скорости стремится к предельному значению: k(T) A. Это соответствует тому, что все молекулы являются химически активными и каждое столкновение приводит к реакции.

Энергию активации можно определить, измерив константу скорости при двух температурах. Из уравнения (4.2) следует:

. (4.3)

Более точно энергию активации определяют по значениям константы скорости при нескольких температурах. Для этого уравнение Аррениуса (4.2) записывают в логарифмической форме

и записывают экспериментальные данные в координатах ln k — 1/T. Тангенс угла наклона полученной прямой равен —EA / R.

Для некоторых реакций предэкспоненциальный множитель слабо зависит от температуры. В этом случае определяют так называемую опытную энергию активации:

. (4.4)

Если предэкспоненциальный множитель — постоянный, то опытная энергия активации равна аррениусовской энергии активации: Eоп = EA.

Пример 4-1. Пользуясь уравнением Аррениуса, оцените, при каких температурах и энергиях активации справедливо правило Вант-Гоффа.

Решение. Представим правило Вант-Гоффа (4.1) как степенную зависимость константы скорости:

,

где B — постоянная величина. Сравним это выражение с уравнением Аррениуса (4.2), приняв для температурного коэффициента скорости значение

.

Возьмем натуральный логарифм обеих частей этого приближенного равенства:

.

Продифференцировав полученное соотношение по температуре, найдем искомую связь связь между энергией активации и температурой:

.

Если энергия активации и температура примерно удовлетворяют этому соотношению, то правилом Вант-Гоффа для оценки влияния температуры на скорость реакции пользоваться можно.

Пример 4-2. Реакция первого порядка при температуре 70 о С завершается на 40% за 60 мин. При какой температуре реакция завершится на 80% за 120 мин, если энергия активации равна 60 кДж/моль?

Решение. Для реакции первого порядка константа скорости выражается через степень превращения следующим образом:

,

где a = x/a — степень превращения. Запишем это уравнение при двух температурах с учетом уравнения Аррениуса:

,

где EA = 60 кДж/моль, T1 = 343 K, t1 = 60 мин, a 1 = 0.4, t2 = 120 мин, a 2 = 0.8. Поделим одно уравнение на другое и прологарифмируем:

Подставляя в это выражение приведенные выше величины, находим T2 = 333 К = 60 о С.

Пример 4-3. Скорость бактериального гидролиза мышц рыб удваивается при переходе от температуры -1.1 о С к температуре +2.2 о С. Оцените энергию активации этой реакции.

Решение. Увеличение скорости гидролиза в 2 раза обусловлено увеличением константы скорости: k2 = 2k1. Энергию активации по отношению констант скорости при двух температурах можно определить из уравнения (4.3) с T1 = t1 + 273.15 = 272.05 K, T2 = t2 + 273.15 = 275.35 K:

130800 Дж/моль = 130.8 кДж/моль.

4-1. При помощи правила Вант-Гоффа вычислите, при какой температуре реакция закончится через 15 мин, если при 20 о С на это требуется 2 ч. Температурный коэффициент скорости равен 3.(ответ)

4-2. Время полураспада вещества при 323 К равно 100 мин, а при 353 К — 15 мин. Определите температурный коэффициент скорости.(ответ)

4-3. Какой должна быть энергия активации, чтобы скорость реакции увеличивалась в 3 раза при возрастании температуры на 10 0 С а) при 300 К; б) при 1000 К?(ответ)

4-4. Реакция первого порядка имеет энергию активации 25 ккал/моль и предэкспоненциальный множитель 5 . 10 13 сек -1 . При какой температуре время полураспада для данной реакции составит: а) 1 мин; б) 30 дней?(ответ)

4-5. В каком из двух случаев константа скорости реакции увеличивается в большее число раз: при нагревании от 0 о С до 10 о С или при нагревании от 10 о С до 20 о С? Ответ обоснуйте с помощью уравнения Аррениуса.(ответ)

4-6. Энергия активации некоторой реакции в 1.5 раза больше, чем энергия активации другой реакции. При нагревании от T1 до T2 константа скорости второй реакции увеличилась в a раз. Во сколько раз увеличилась константа скорости первой реакции при нагревании от T1 до T2?(ответ)

4-7. Константа скорости сложной реакции выражается через константы скорости элементарных стадий следующим образом:

Выразите энергию активации и предэкспоненциальный множитель сложной реакции через соответствующие величины, относящиеся к элементарным стадиям.(ответ)

4-8. В необратимой реакции 1-го порядка за 20 мин при 125 о С степень превращения исходного вещества составила 60%, а при 145 o C такая же степень превращения была достигнута за 5.5 мин. Найдите константы скорости и энергию активации данной реакции .(ответ)

4-9. Реакция 1-го порядка при температуре 25 о С завершается на 30% за 30 мин. При какой температуре реакция завершится на 60% за 40 мин, если энергия активации равна 30 кДж/моль?(ответ)

4-10. Реакция 1-го порядка при температуре 25 о С завершается на 70% за 15 мин. При какой температуре реакция завершится на 50% за 15 мин, если энергия активации равна 50 кДж/моль?(ответ)

4-11. Константа скорости реакции первого порядка равна 4.02 . 10 -4 с -1 при 393 К и 1.98 . 10 -3 с -1 при 413 К. Рассчитайте предэкспоненциальный множитель для этой реакции.(ответ)

4-12. Для реакции H2 + I2 2HI константа скорости при температуре 683 К равна 0,0659 л/(моль. мин), а при температуре 716 К — 0,375 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 700 К.(ответ)

4-13. Для реакции 2N2O 2N2 + O2 константа скорости при температуре 986 К равна 6,72 л/(моль. мин), а при температуре 1165 К — 977,0 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 1053,0 К.(ответ)

4-14. Трихлорацетат-ион в ионизирующих растворителях, содержащих H + , разлагается по уравнению

H + + CCl3COO — CO2 + CHCl3

Стадией, определяющей скорость реакции, является мономолекулярный разрыв связи C- C в трихлорацетат-ионе. Реакция протекает по первому порядку, и константы скорости имеют следующие значения: k = 3.11 . 10 -4 с -1 при 90 о С, k = 7.62 . 10 -5 с -1 при 80 о С. Рассчитайте а) энергию активации, б) константу скорости при 60 о С.(ответ)

4-15. Для реакции CH3COOC2H5 + NaOH ѕ CH3COONa + C2H5OH константа скорости при температуре 282,6 К равна 2,307 л/(моль. мин), а при температуре 318,1 К — 21,65 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 343 К.(ответ)

4-16. Для реакции C12H22O11 + H2O C6H12O6 + C6H12O6 константа скорости при температуре 298,2 К равна 0,765 л/(моль. мин), а при температуре 328,2 К — 35,5 л/(моль. мин). Найдите энергию активации этой реакции и константу скорости при температуре 313,2 К.(ответ)

4-17. Вещество разлагается двумя параллельными путями с константами скорости k1 и k2. Какова разность энергий активации этих двух реакций, если при 10 o C k1/k2 = 10, а при 40 o C k1/k2 = 0.1?(ответ)

4-18. В двух реакциях одинакового порядка разница энергий активации составляет E2E1 = 40 кДж/моль. При температуре 293 К отношение констант скорости равно k1/k2 = 2. При какой температуре константы скорости сравняются?(ответ)

4-19. Разложение ацетондикарбоновой кислоты в водном растворе — реакция первого порядка. Измерены константы скорости этой реакции при разных температурах:

ВАНТ-ГОФФА ПРАВИЛО

ВАНТ-ГОФФА ПРАВИЛО. Почти все химические реакции при повышении температуры идут быстрее. Зависимость скорости реакции от температуры описывается уравнением Аррениуса:

k = Ae –E a/RT, где k константа скорости реакции, А не зависящая от температуры константа (ее называют предэкспоненциальным множителем), Еа энергия активации, R газовая постоянная, Т абсолютная температура. В школьных учебниках зависимость скорости реакции от температуры определяют в соответствии с так называемым «правилом Вант-Гоффа», которое в 19 в. сформулировал голландский химик Якоб Вант-Гофф. Это чисто эмпирическое правило, т.е. правило, основанное не на теории, а выведенное из опытных данных. В соответствии с этим правилом, повышение температуры на 10° приводит к увеличению скорости в 24 раза. Математически эту зависимость можно выразить уравнением v2v1 = g (T2 T 1 )/10 , где v1 и v2 скорости реакции при температурах Т1 и Т2; величина g называется температурным коэффициентом реакции. Например, если g = 2, то при Т2 Т1 = 50 о v2/v1 = 2 5 = 32, т.е. реакция ускорилась в 32 раза, причем это ускорение никак не зависит от абсолютных величин Т1 и Т2, а только от их разности.

Однако из уравнения Аррениуса следует, что температурный коэффициент реакции зависит как от энергии активации, так и от абсолютной температуры. Для данной реакции с определенным значением Еа ускорение при повышении температуры на 10° будет тем больше, чем ниже температура. Это почти очевидно и без расчетов: повышение температуры от 0 до 10° С должно сказаться на скорости реакции значительно сильнее, чем такое же повышение температуры, например, от 500 до 510° С.

С другой стороны, для данного температурного интервала ускорение реакции будет тем сильнее, чем больше ее энергия активации. Так, если энергия активации реакции мала, то такая реакция идет очень быстро, и при повышении температуры на 10° С ее скорость почти не изменяется. Для таких реакций температурный коэффициент намного меньше 2. Для реакций же с большой энергией активации, которые при невысоких температурах идут медленно, ускорение при повышении температуры на 10° С может значительно превысить 4-кратное.

Например, реакция диоксида углерода со щелочным раствором с образованием гидрокарбонат-иона (СО2 + ОН® НСО3 – ) имеет энергию активации 38,2 кДж/моль, поэтому при повышении температуры, например, от 50 до 60° С эта реакция ускорится всего в 1,5 раза. В то же время реакция распада этилбромида на этилен и бромоводород (С2Н5Вr ® С2Н4 + НВr) с энергией активации 218 кДж/моль ускорится при повышении температуры от 100 до 110 o С в 6,3 раза (правда, в этом интервале температур реакция идет очень медленно). Кинетика реакции атомов водорода с этаном H + C2H6 ® H2 + C2H5 была изучены в широком температурном интервале – от 300 до 1100 К (27–827° С). Для этой реакции Eа = 40,6 кДж/моль. Следовательно, повышение температуры на 10° вызовет увеличение скорости реакции в 1,7 раза в интервале 300–310 K и только в 1,04 раза в интервале 1090–1100 K. Так что при высоких температурах скорость этой реакции практически не зависит от температуры. А для реакции присоединения атома водорода к двойной связи H + C2H4 ® C2H5 энергия активации мала (Eа = 3,4 кДж/моль, так что ее скорость слабо зависит от температуры в широком температурном интервале. И только при температурах намного ниже 0° С начинает сказываться наличие активационного барьера.

Подобных примеров можно привести множество. Очевидно, что правило Вант-Гоффа противоречит не только уравнению Аррениуса, но и многим экспериментальным данным. Откуда же оно взялось и почему нередко выполняется?

Если в приведенном выше математическом выражении для правила Вант-Гоффа подставить вместо скоростей v1 и v2 для данной реакции их зависимости от температуры, в соответствии с уравнением Аррениуса, то после сокращения предэкспоненциальных множителей получим следующее выражение: g = vT +10/vT = е –Е а/R(Т+10)/е –Е а/ = е (Еа/R)[1/Т 1/(T+10)] . Логарифмироване этого уравнения дает: lng = (Eа/R)[1/T 1/(T + 10)], откуда Еа = Rlng T(T + 10)/10 = 0,83lngT(T + 10). Энергия активации не является функцией температуры, эта зависимость нужна лишь для удобства последующего анализа. Последнее уравнение это уравнение параболы, в котором физический смысл имеют только положительные значения. Соответствующая диаграмма ограничена двумя ветвями параболы: при g = 2 получаем Еа = 0,58Т(Т + 10), при g = 4 получаем Еа = 1,16Т(Т + 10). К тем же формулам приходим и при использовании десятичных логарифмов. Соответствующие графики двух парабол, для значений g 2 и 4, приведены на рисунке. Их физический смысл заключается в том, что области выполнения правила Вант-Гоффа соответствует только область между параболами. Таким образом, существуют только определенные соотношения между энергией активации реакции и температурой ее проведения, при которых правило Вант-Гоффа выполняется. Ниже нижней ветви температурный коэффициент g 4.

Если посмотреть, какие реакции «укладываются» в указанную довольно узкую область, то окажется, что все эти реакции идут не слишком быстро и не слишком медленно, а с удобной для измерения (при данной температуре) скоростью. Скорость только таких реакций и могли изучать химики во времена Вант-Гоффа. Например, если энергия активации была невелика (меньше 50 кДж/моль), то такая реакция при комнатной температуре заканчивалась за 12 секунды; поэтому для изучения ее кинетики следовало значительно понизить температуру, чтобы реакция проходила не быстрее, чем за 1020 минут. Только в этом случае химики 19 в. успевали отбирать пробы по ходу реакции и анализировать изменение в них концентрации реагентов. Других способов изучения скорости реакции в то время не было. Если это не удавалось (например, водный раствор замерзал), то скорость такой реакции не изучали. Если же энергия активации реакции была велика и при комнатной температуре она шла слишком медленно (многие сутки, или даже недели), то температуру повышали, чтобы реакция шла с удобной для измерения скоростью. И здесь были свои ограничения – например, раствор мог закипеть, т.е. в любом случае исследователи фактически «подстраивали» изучаемую реакцию под область между двумя параболами.

Сейчас химики имеют возможность с помощью различных приборов экспериментально изучать и очень быстрые (идущие в микросекундной области), и очень медленные реакции, для которых температурный коэффициент может быть значительно меньше 2 или значительно больше 4. Поэтому правило Вант-Гоффа, которое, в отличие от уравнения Аррениуса, не имеет четкого физического смысла, представляет лишь чисто исторический интерес и в современной науке не используется. В подавляющем большинстве учебников и монографий по химической кинетике, а также в 5-томной Химической Энциклопедии это правило даже не упоминается. И, тем не менее, если изучаемая реакция идет с удобной для измерения скоростью, например, заканчивается за 3040 мин, а энергия активации ее еще не измерена, то для предварительной грубой оценки зависимости скорости такой реакции от температуры можно использовать правило Вант-Гоффа. Поэтому это правило приводится во всех школьных учебниках химии.

Популярная химия

Главное меню

Зависимость скорости протекания химической реакции от температуры определяется правилом Вант-Гоффа.

Голландский химик Вант-Гофф Якоб Хендрик, основатель стереохимии, в 1901 г. стал первым лауреатом Нобелевской премии по химии. Она была присуждена ему за открытие законов химической динамики и осмотического давления. Вант-Гофф ввёл представления о пространственном строении химических веществ. Он был уверен, что прогресса в фундаментальных и прикладных исследованиях по химии можно достичь, применяя физические и математические методы. Разработав учение о скорости реакций, он создал химическую кинетику.

Итак, кинетикой химических реакций называют учение о скорости протекания, о том, какое химической взаимодействие происходит в процессе реакций, и о зависимости реакций от различных факторов. У различных реакций скорость протекания различна.

Скорость химической реакции напрямую зависит от природы химических веществ, вступающих в реакцию. Некоторые вещества, такие как NаОН и НCl, способны реагировать за доли секунды. А некоторые химические реакции длятся годами. Пример такой реакции – ржавление железа.

Скорость реакции зависит также и от концентрации реагирующих веществ. Чем выше концентрация реагентов, тем выше и скорость реакции. В ходе реакции концентрация реагентов уменьшается, следовательно, замедляется и скорость реакции. То есть, в начальный момент скорость всегда выше, чем в любой последующий.

Скоростью химической реакции принято считать изменение концентрации реагирующих веществ в единицу времени.

Концентрации реагентов определяют через определённые промежутки времени.

Правило Вант-Гоффа

Важным фактором, от которого зависит скорость протекания реакций, является температура.

Все молекулы сталкиваются с другими. Число соударений в секунду очень велико. Но, тем не менее, химические реакции не протекают с огромной скоростью. Так происходит, потому что в ходе реакции молекулы должны собраться в активированный комплекс. А образовать его могут только активные молекулы, кинетической энергии которых достаточно для этого. При малом количестве активных молекул реакция протекает медленно. При повышении температуры увеличивается число активных молекул. Следовательно, и скорость реакции будет выше.

Вант-Гофф считал, что скорость химической реакции – это закономерное изменение концентрации реагирующих веществ в единицу времени. Но оно не всегда является равномерным.

Правило Вант-Гоффа гласит, что при повышении температуры на каждые 10 о скорость химической реакции увеличивается в 2-4 раза.

Математически правило Вант-Гоффа выглядит так:

где V2 – скорость протекания реакции при температуре t2, а V1 – скорость протекания реакции при температуре t1;

ɣ — температурный коэффициент скорости реакции. Этот коэффициент есть отношение констант скоростей при температуре t+10 и t.

Так, если ɣ = 3, а при 0 о С реакция длится 10 минут, то при 100 о С она будет продолжаться всего 0,01 сек. Резкое увеличение скорости протекания химической реакции объясняется увеличением количества активных молекул при повышении температуры.

Правило Вант-Гоффа применимо только в температурном диапазоне 10-400 о С. Не подчиняются правилу Вант-Гоффа и реакции, в которых участвуют большие молекулы.

Если система, разделенная мембраной, представляет собой растворы, в которых через мембрану способны проходить только молекулы растворителя, то свойства ее будут определяться разностью мольных долей (концентраций) растворителя по обе стороны мембраны.

Явление, связанное со способностью проходить через мембрану, в частности, только молекул растворителя, называется осмосом , а вызываемое им изменение давления по обе стороны мембраны – осмотическим давлением . Явление осмоса чрезвычайно разнообразно и во многом определяется природой мембраны и компонентов раствора.

Представим, что сосуд с двумя горлами для залива раствора разделен мембраной M (рис. 6.4). В каждую часть сосуда зальем растворы, отличающиеся только концентрацией. Поскольку мольные доли растворителя по обе стороны мембраны не совпадают, то стремление их к выравниванию приведет к переходу части растворителя в ту часть сосуда, где концентрация растворенного вещества больше. Увеличение количества растворителя эквивалентно возрастанию давления, и если мембрана способна к деформации, она изогнется в сторону с меньшей концентрацией растворенного вещества (рис. 6.4а).

Если мембрана жесткая, то в отсеке с большей концентрацией количество растворителя будет возрастать до тех пор, пока гидростатическое давление h (рис. 6.4б) не станет равным осмотическому давлению и не прекратит осмос.

Химик.ПРО – решение задач по химии бесплатно

Как необходимо изменить температуру в системе, чтобы скорость химической реакции увеличить в 81 раз. Температурный коэффициент равен 3? Правило Вант-Гоффа.

Решение задачи

Зависимость скорости химической реакции от температуры определяет правило Вант-Гоффа, которым мы воспользуемся при решении задачи.

Напомню правило Вант-Гоффа: скорость большинства химических реакций при повышении температуры на каждые 10 о С возрастает в 2-4 раза.

Математически правило Вант-Гоффа выражается формулой:

– температурный коэффициент;

– скорость химической реакции при температурах , соответственно.

Учитывая то, что по условию задачи температурный коэффициент равен 3, вычислим, как необходимо изменить температуру в системе, чтобы скорость химической реакции увеличить в 81 раз:

То есть, по правилу Вант-Гоффа необходимо повысить температуру в системе в на 40 о С.

по правилу Вант-Гоффа необходимо повысить температуру на 40 о С.

Скорость химической реакции

Говорить об осуществимости процесса можно по изменению энергии Гибсса системы. Но данная величина не отражает настоящую возможность протекания реакции, ее скорость и механизм.

Для полноценного представления химической реакции, надо иметь знания о том, какие существуют временные закономерности при ее осуществлении, т.е. скорость химической реакции и ее детальный механизм. Скорость и механизм реакции изучает химическая кинетика – наука о химическом процессе.

С точки зрения химической кинетики, реакции можно классифицировать на простые и сложные.

Простые реакции – процессы, протекающие без образования промежуточных соединений. По количеству частиц, принимающих в ней участие, они делятся на мономолекулярные, бимолекулярные, тримолекулярные. Соударение большего чем 3 числа частиц маловероятно, поэтому тримолекулярные реакции достаточно редки, а четырехмолекулярные — неизвестны. Сложные реакции – процессы, состоящие из нескольких элементарных реакций.

Любой процесс протекает с присущей ему скоростью, которую можно определить по изменениям, происходящим за некий отрезок времени. Среднюю скорость химической реакции выражают изменением количества вещества n израсходованного или полученного вещества в единице объема V за единицу времени t.

Если вещество расходуется, то ставим знак «-», если накапливается – «+»

При постоянном объеме:

Единица измерения скорости реакции моль/л·с

В целом, υ — величина постоянная и не зависит от того, за каким участвующим в реакции веществом, мы следим.

Зависимость концентрации реагента или продукта от времени протекания реакции представляют в виде кинетической кривой, которая имеет вид:

Вычислять υ из экспериментальных данных удобнее, если указанные выше выражения преобразовать в следующее выражение:

Закон действующих масс. Порядок и константа скорости реакции

Одна из формулировок закона действующих масс звучит следующим образом: Скорость элементарной гомогенной химической реакции прямо пропорциональна произведению концентраций реагентов.

Если исследуемый процесс представить в виде:

а А + b В = продукты

то скорость химической реакции можно выразить кинетическим уравнением:

а и b – стехиометрические коэффициенты простой реакции,

k – константа скорости реакции.

Химический смысл величины k — это скорость реакции при единичных концентрациях. То есть, если концентрации веществ А и В равны 1, то υ = k.

Надо учитывать, что в сложных химических процессах коэффициенты а и b не совпадают со стехиометрическими.

Закон действующих масс выполняется при соблюдении ряда условий:

  • Реакция активируется термично, т.е. энергией теплового движения молекул.
  • Концентрация реагентов распределена равномерно.
  • Свойства и условия среды в ходе процесса не меняются.
  • Свойства среды не должны влиять на k.

К сложным процессам закон действия масс применить нельзя. Это можно объяснить тем, что сложный процесс состоит из нескольких элементарных стадий, и его скорость будет определяться не суммарной скоростью всех стадий, лишь одной самой медленной стадией, которя называется лимитирующей.

Каждая реакция имеет свой порядок. Определяют частный (парциальный) порядок по реагенту и общий (полный) порядок. Например, в выражении скорости химической реакции для процесса

a – порядок по реагенту А

Для простых процессов порядок реакции указывает на количество реагирующих частиц (совпадает со стехиометрическими коэффициентами) и принимает целочисленные значения. Для сложных процессов порядок реакции не совпадает со стехиометрическими коэффициентами и может быть любым.

Определим факторы, влияющие на скорость химической реакции υ.

Зависимость скорости реакции от концентрации реагирующих веществ

Очевидно, что с увеличением концентраций реагирующих веществ, υ увеличивается, т.к. увеличивается число соударений между участвующими в химическом процессе веществами. Причем, важно учитывать порядок реакции: если это n = 1 по некоторому реагенту, то ее скорость прямо пропорциональна концентрации этого вещества. Если по какому-либо реагенту n = 2, то удвоение его концентрации приведет к росту скорости реакции в 2 2 = 4 раза, а увеличение концентрации в 3 раза ускорит реакцию в 3 2 = 9 раз.

Зависимость скорости реакции от давления

определяется уравнением Клапейрона – Менделеева, которое связывает концентрацию и давление:

Таким образом, изменение концентрации в системе, а следовательно и скорости реакции имеет прямую зависимость от изменения давления. Эта зависимость актуальна в первую очередь для процессов, идущих с участием газов. Например, для реакции первого порядка, увеличение давления в 2 раза вызовет рост концентрации вещества в 2 раза, что непременно изменит υ – она станет в 2 раза больше.

Зависимость скорости реакции от площади поверхности

касается гетерогенных реакций. Вещества реагируют быстрее, если площадь поверхности, на которой может происходить взаимодействие веществ больше. Растворяя вещество, мы уменьшаем его размеры до размеров молекулы, увеличивая тем самым площадь поверхности. Поэтому химические процессы между веществами, находящимися в растворенном, жидком или газообразном состоянии имеют большую скорость, чем взаимодействия между твердыми веществами.

Зависимость скорости реакции от природы вещества.

Имеет большое значение строение электронной оболочки атома, тип химической связи и ее прочность в молекулах, структура вещества, прочность его кристаллической решетки. Известно, что натрий будет активнее взаимодействовать с водой, чем, например, олово. Поэтому и скорость взаимодействия натрия с водой выше скорости взаимодействия олова с водой.

Зависимость скорости реакции от температуры

определяется правилом Вант-Гоффа и уравнением Аррениуса. Повышая температуру, мы сообщаем молекулам дополнительную энергию (увеличивая, тем самым, энергию активации), которая способствует протеканию реакции. Сванте Аррениус в 1889 году, изучая зависимость υ от температуры, установил, что большинство химических процессов подчиняются уравнению:

где k — константа скорости реакции

Еа -энергия активации – минимальная (критическая) энергия, необходимая для осуществления реакции, единица измерения Дж/моль

Т — абсолютная температура

R – газовая постоянная, R = 8,314 Дж/моль·град

A — предэкспоненциальный множитель (частотный фактор), единица измерения совпадает с k. Эта константа выражает вероятность того, что при столкновении молекулы будут ориентированы так, чтобы взаимодействие было возможно.

Часто бывает, что известна константа скорости при одной температуре Т1, а требуется найти k при некой другой температуре Т2. Это легко сделать, если взять логарифм уравнения Аррениуса при Т1 и Т2:

Вычитая второе равенство из первого, получаем:

При определении скорости химической реакции, также можно использовать уравнение Аррениуса (в случае, если υ описывается степенным уравнением):

Если принять, что концентрации веществ А и В постоянны и прологарифмировать данное выражение, то получим следующее:

Также удобно пользоваться эмпирическим правилом, которое сформулировал Якоб Вант-Гофф: увеличение температуры на каждые 10 градусов, приводит к росту скорости реакции в 2 – 4 раза. Правило имеет математическое выражение:

γ — температурный коэффициент реакции, значения которого лежат в интервале от 2 до 4.

υT1T2 = 3 2 = 9. Это означает, что υ возросла в 9 раз.

Зависимость скорости реакции от присутствия катализатора

Катализ – это любое изменение скорости реакции под действием катализатора. Он может быть положительным и отрицательным. Суть катализа – генерирование активного субстрата или реагента с участием катализаторов.

Катализатор представляет собой вещество, которое селективно ускоряет химическую реакцию, вступая при этом в промежуточную стадию, но регенирируясь к ее концу (к моменту образования конечных продуктов). Например, в биохимической среде в качестве катализаторов выступают ферменты.

Если такое вещество замедляет химическую реакцию, то оно называется ингибитором.

Влияние катализатора на скорость реакции основывается на том, что он изменяет энергию активации Еа или А. Понижение энергии активации под действием катализатора схематично представлено на рисунке ниже:

влияние катализатора на энергию активации

Видно, что веществам А и В требуется большое количество энергии, чтобы образовать конечные продукты. Но в присутствии катализатора для получения конечных продуктов требуется гораздо меньше энергии, т.к. идет понижение полной энергии активации, и тем самым, увеличение скорости реакции. Обращаю ваше внимание на то, что энергии как начальных, так и конечных веществ остаются одинаковыми в обеих реакциях.

Вант-Гоффа правило

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Вант-Гоффа правило» в других словарях:

Вант-Гоффа правило — ЭМБРИОЛОГИЯ ЖИВОТНЫХ ВАНТ ГОФФА ПРАВИЛО – изменение температуры (если оно не выходит за определенные для каждого вида животного рамки нормальных температур) не приводит к качественным изменениям в развитии, а лишь сказывается на темпе дробления … Общая эмбриология: Терминологический словарь

Вант-Гоффа правило — Правило Вант Гоффа эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °С до 100 °С). Я.Х. Вант Гофф на основании множества… … Википедия

Правило Вант-Гоффа — Правило Вант Гоффа эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант Гофф на… … Википедия

ПРАВИЛО ВАНТ-ГОФФА-АРРЕНИУСА — правило, сформулированное Вант Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть повышена в 2 3 раза. Экологический энциклопедический… … Экологический словарь

правило Вант-Гоффа — Правило Вант Гоффа: при повышении температуры на каждые 10° скорость большинства химических реакций увеличивается в 2 4 раза. Общая химия : учебник / А. В. Жолнин [1] … Химические термины

правило Вант-Гоффа — van’t Hofo dėsnis statusas T sritis fizika atitikmenys: angl. Van’t Hoff law vok. Van’t Hoffsche Regel, f; Van’t Hoffsches Gesetz, m rus. закон Вант Гоффа, m; правило Вант Гоффа, m pranc. loi de Van’t Hoff, f … Fizikos terminų žodynas

правило Вант-Гоффа — van’t Hofo taisyklė statusas T sritis Standartizacija ir metrologija apibrėžtis Teiginys, kuriuo teigiama, kad padidinus temperatūrą 10 laipsnių reakcijos sparta padidėja nuo 2 iki 4 kartų. atitikmenys: angl. van’t Hoff law; van’t Hoff rule vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

правило Вант-Гоффа — van t Hofo taisyklė statusas T sritis chemija apibrėžtis Pakėlus temperatūrą 10 laipsnių reakcijos greitis padidėja 2–4 kartus. atitikmenys: angl. van t Hoff law; van t Hoff rule rus. правило Вант Гоффа … Chemijos terminų aiškinamasis žodynas

закон Вант-Гоффа — van’t Hofo dėsnis statusas T sritis fizika atitikmenys: angl. Van’t Hoff law vok. Van’t Hoffsche Regel, f; Van’t Hoffsches Gesetz, m rus. закон Вант Гоффа, m; правило Вант Гоффа, m pranc. loi de Van’t Hoff, f … Fizikos terminų žodynas

ПРАВИЛО — (1) буравчика определяет направление вектора напряжённости магнитного поля прямолинейного проводника с постоянным током. Если буравчик ввёртывается по направлению тока, то направление его вращения определяет направление магнитных силовых линий… … Большая политехническая энциклопедия

Смотрите так же:

  • Тригонометрические уравнения правила Алгебра – 10 класс. Тригонометрические уравнения Урок и презентация на тему: "Решение простейших тригонометрических уравнений" Дополнительные материалы Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания! Все материалы […]
  • Материнский капитал за 3 ребенка в россии Как получить материнский капитал на третьего ребенка в 2018 году Начиная с 2007 года, в РФ действует программа государственной поддержки семей, в которых воспитывается двое или трое детей. Речь идет о материнском капитале, правила оформления которого, часто […]
  • Приказ путина по египту Владимир Путин прибыл с рабочим визитом в Египет В аэропорту главу Российского государства встречал Президент Арабской Республики Египет Абдельфаттах Сиси Сиси Абдельфаттах Президент Арабской Республики Египет . Лидеры двух стран проведут переговоры по […]
  • Когда переоформляешь машину нужна страховка Когда переоформляешь машину нужна страховка Получите квалифицированную помощь прямо сейчас! Наши адвокаты проконсультируют вас по любым вопросам вне очереди. Сколько дней можно ездить без страховки по договору купли-продажи в 2018 году Покупая автомобиль, вы […]
  • Закон о запрете на усыновление Гражданам каких стран и почему запрещено усыновлять детей из России? Инициаторами законопроекта в сопроводительной документации указаны депутатов Госдумы и члена Совета Федерации [21]. Первое чтение Законопроект внесён в Госдуму её спикером Сергеем […]
  • Узнать штрафы гибдд по организации Как узнать о наличии штрафа ГИБДД по своему ИНН в 2018 году Штрафы за нарушение ПДД часто приходят в «письмах счастья» и являются неожиданностью для нерадивых водителей. В некоторых случаях необходимо заблаговременно знать о задолженности. Ее появление может […]
  • Закон рф о недрах 2395-1 от 21021992 г Закон рф от 21.02.1992 n 2395-1 (с изм. и доп., вступ. в силу с 01.01.2016) Раздел I. Общие положения Статья 1. Законодательство Российской Федерации о недрах Статья 1.1. Правовое регулирование отношений недропользования Статья 1.2. Собственность на […]
  • Как изменить разрешение файла в 8 Как изменить расширение файла в Windows В этой статье я расскажу, как изменить расширение файла в операционной системе Windows, для правильного сопоставления типа или формата файла. Инструкция по изменению расширения имен файлов подойдет для операционных […]