Задачи на тему сила упругости закон гука

Урок физики по теме «Закон Гука – решение задач»

В 1635 году родился Роберт Гук, английский физик, член Лондонского королевского общества, его секретарь. В 1660 году открыл закон упругости для твердых тел (закон Гука).

В курсе 7 класса одной из сложных тем является условие равновесия груза на пружине: kx=mg, но предварительно для более эффективного понимания этой темы проводится эксперимент по закону Гука, а затем комментируются формулы: Fу=kx и Fт=mg .

Задачи на данную тему

1) Какова жесткость пружины , если груз массой 10 кг растягивает пружину на 10 см.

2) Используя полученный Ответет из предыдущей задачи определите какой груз нужно подвесить к пружине , чтобы растянуть ее на 20 см.

3) Груз массой 3 кг растягивает пружину на 5 см . Каким должен быть груз , который растянет пружину на 8см.

III. Изучение нового материала:

Вам уже известно, что на все тела, находящиеся на Земле, действует сила тяжести. В результате действия силы тяжести на Землю падает подброшенный камень, выпущенная из лука стрела, снежинки.

Почему же покоятся тела, подвешенные на нити или лежащие на опоре? По-видимому, сила тяжести уравновешивается какой-то другой силой. Что это за сила и как она возникает.

Проведем опыт: на упругий подвес поместим гирю. Под действием силы тяжести гиря начнет двигаться вниз, и подвес деформируется – его длина увеличится. При этом возникнет сила, с которой подвес действует на тело. Когда эта сила уравновесит силу тяжести, тело остановится. Из этого опыта можно сделать вывод, что на гирю, кроме силы тяжести, направленной вертикально вниз, действует другая сила. Эта сила направлена вертикально вверх. Она и уравновешивает силу тяжести. Эту силу называют силой упругости. Аналогичные явления происходят с любым телом которое мы положили на опору.

Ребята, запишите, пожалуйста, в тетрадях определение силы упругости: Сила, возникающая в теле в результате его деформации, и стремящаяся вернуть тело в исходное положение называется силой упругости.

– Проведем эксперимент: линейка и пружина с указателем закреплены на штативе. Будем поочередно подвешивать грузы на пружину и фиксировать ее удлинение. Заносим данные в таблицу . Для расчета силы упругости используем равенство сил, действующих на груз: Fупр = Fтяж = mg. По данным таблицы строим график зависимости Fупр(∆l).

– Какую линию получили на графике?

– Как называется такая зависимость в математике?

– Что происходит с силой упругости, если длина пружины увеличивается? Уменьшается?

– Как изменится сила упругости, если длина пружины увеличится в 2 раза? Посмотрим на график.

– Найдем отношение силы упругости к удлинению пружины (первый результат считаю я, остальные вы – по вариантам):

– Какой вывод можно сделать об отношении силы упругости к удлинению пружины?

– Мы с вами получили закон, открытый английским физиком Робертом Гуком в 1660г.

Закон Гука: Fупр = k∆l – сила упругости прямо пропорциональна величине деформации. Обсудим формулу закона и попытаемся определить, какие величины в нее входят (обсуждение формулы, записи величин и единиц их измерения).

Теперь мы можем написать условие равновесия груза на пружине : mg = k∆l , используем это условие при решении задачи №1:

1) Какова жесткость пружины , если груз массой 10 кг растягивает пружину на 0,1 м.

mg = k∆l
mg : ∆l = k

После подстановки получаем ответ: 1000Н/м

Теперь зная жесткость пружины, разберем ситуацию каким образом мы можем узнать массу тела, рассмотрим задачу №2:

2) Используя полученный ответ из предыдущей задачи определите какой груз нужно подвесить к пружине, чтобы растянуть ее на 20 см.

mg = k ∆l
m = k ∆l:g

После подстановки получаем ответ: 20 кг

А теперь используем наши умения и навыки для решения более сложной задачи:

3) Груз массой 3 кг растягивает пружину на 5 см. Каким должен быть груз, который растянет пружину на 8см.

М1 g = k L1
М1 g : L1 = k =600 Н/м

Нашли жесткость, теперь можем написать условие равновесия груза на пружине и найти массу груза:

1.12. Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости .

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры . При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления . Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести: Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины . В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром . Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 % . При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Класс!ная физика

«Класс!ная физика» переезжает с «народа»!
«Класс!ная физика» — это сайт для тех, кто любит физику, учится сам и учит других.
«Класс!ная физика» — всегда рядом!
Интересные материалы по физике для школьников, учителей и всех любознательных.

Читай, познавай, исследуй!
Мир физики интересен и увлекателен, он приглашает всех любознательных в путешествие по страницам сайта «Класс!ная физика».

Самодвижущиеся шагающие игрушки
Идет бычок, качается, вздыхает на ходу. Такие игрушки по горизонтальной поверхности можно водить за нитку, а по наклонной плоскости они будут шагать самостоятельно. Внутри у них нет никакого спрятанного моторчика или заводной пружинки. А как же они движутся? . читать

Физика и секреты художников
Тайны мумий фараонов и изобретения Ребрандта, подделки шедевров и секреты папирусов Древнего Египта — искусство скрывает в себе много тайн, но современные физики с помощью новых методов и приборов находят объяснения все большему числу удивительных секретов прошлого . читать

Изобретения Дедала
— книга о невероятных футуристических изобретениях и предположениях, серьезных и юмористических, предложенных английским ученым Дэвидом Джоунсом, начиная с 1968 года.
Интересно, сбылось ли что-то за эти годы? . читать

Насколько реальны чудеса Супермена?
Мифические способности Супермена — американского супергероя поражают читателей комиксов. Хорошо известно, что Супермен получает свою энергию, поглощая солнечный свет, но сколько же энергии требуется ему для совершения его героических повседневных дел? . читать

Можно ли вскипятить воду звуком? Или Новогодний эксперимент!
Если у вас в доме вдруг пропало электричество, не работает электрический чайник, плита, и кончились спички, но зато вопреки всему во всю силу гремит музыка, давайте зададимся вопросом: можно ли вскипятить воду, используя звук? Насколько это реально? . читать

Хрупкая мечта Золушки или новогодняя сказка для юных физиков
С детства мы помним, что праздничные туфельки Золушки были сделаны из хрусталя. Сказка ведь так и называется: «Золушка, или хрустальная туфелька». А действительно ли туфелька Золушки была хрустальной? Сказка сказкой, но можно ли ходить в хрустальных туфельках? . читать

Азбука физики

Волшебный калейдоскоп
А, вы, когда- нибудь в детстве пытались сломать калейдоскоп и посмотреть, как он устроен? Да ? Тогда всё в порядке, вы ничем не отличаетесь от миллионов других любопытных! В настоящее время изобретатели создают все новые и новые конструкции калейдоскопов . читать

Всемогущее трение
Оно — всюду, да куда без него и денешься?
А вот три помощника-богатыря: графит, молебденит и тефлон. Эти удивительные вещества, обладающие очень высокой подвижностью частиц, применяются в настоящее время в качестве великолепной твердой смазки . читать

Что мы знаем о часах?
Время дано. Это не подлежит обсужденью. Подлежишь обсуждению ты, разместившийся в нем.
Вы никогда не задумывались, почему на обычных часах стрелки идут слева направо? Потому, что тень в солнечных часах шла в том же направлении . читать

Воздухоплавание
«Так поднимаются к звездам!» — начертано на гербе основателей воздухоплавания братьев Монгольфье.
Известный писатель Жюль Верн летал на воздушном шаре всего лишь 24 минуты, но это помогло ему создать увлекательнейшие художественные произведения . читать

«Лошадиная» физика
— чем знаменита лошадь в науке «физика»? Конечно, своей силой в прямом и переносном смысле, а точнее — знаменитой «лошадиной силой»! 18 век — начало эры пара, а в 19 веке вся промышленность перешла уже на новую «тягловую силу» — паровые машины. шло наступление технического прогресса . читать

Паровые двигатели
«Этот могучий исполин был трёхметрового роста: гигант с лёгкостью тянул фургон с пятерыми пассажирами. На голове у Парового Человека была труба дымохода, откуда валил густой чёрный дым . всё, даже лицо, было сделано из железа, и все это непрерывно скрежетало и грохотало. » О ком это? Кому эти дифирамбы? . читать

Тайны магнита
Фалес Милетский наделял его душой, Платон сравнивал его с поэтом, Орфей находил его подобным жениху. В эпоху Возрождения магнит считали отображением неба и приписывали ему способность искривлять пространство. Японцы считали, что магнит — это сила, которая поможет повернуть к вам фортуну . читать

По ту сторону зеркала
Знаете ли Вы, сколько интересных открытий может подарить «зазеркалье»? У изображения Вашего лица в зеркале правая и левая половины переставлены местами. А ведь лица редко бывают полностью симметричными, поэтому окружающие видят Вас совершенно иным. Задумывались ли Вы над этим? . читать

Жизнь и изобретения Николы Тесла
Его называли колдуном и мистификатором. Он был самым загадочным физиком 20 века. Он профессионально занимался лингвистикой, писал стихи, говорил на восьми языках, знал музыку и философию. Прогуливаясь, он мог вдруг сделать сальто или остановиться и прочесть наизусть пару глав из «Фауста» . читать

Секреты обыкновенного волчка
«Сознание того, что чудесное было рядом с нами, приходит слишком поздно.» — А.Блок.
Знаете ли Вы, что малайцы могут часами завороженно наблюдать за вращением волчка. Однако, требуется немалое умение, чтобы правильно раскрутить его, ведь вес малайского волчка может достигать нескольких килограммов . читать

Изобретения Леонардо да Винчи
» Я хочу создавать чудеса!»-говорил он и спрашивал себя: «Но скажи мне, сделано ли тобою хоть что-нибудь?» Леонардо да Винчи писал свои трактаты тайнописью с помощью обыкновенного зеркала, поэтому его зашифрованные рукописи впервые смогли прочитать лишь три столетия спустя . читать

Все о Ваньке-встаньке
Читаем о знакомых нам с детства, но до сих пор удивляющих нас неваляшках, определяем центр тяжести и учимся сохранять равновесие. У Ваньки, у Встаньки несчастные няньки: начнут они Ваньку укладывать спать, а Ванька не хочет, приляжет и вскочит, уляжется снова и вскочит опять . читать

Наш закон бутерброда
Кто же не знаком с философией знаменитого кота Матроскина: «Неправильно ты, дядя Федор, бутерброд намазываешь . » А мы бутерброды не только правильно намазывали, мы их еще и с последнего этажа вниз бросали, и просто так, и с прокруткой, а потом . читать

Техника прошлого
Сегодня с высоты нашего времени все эти устройства и аппараты из далекого прошлого можно считать почти игрушками, однако 100 и более лет назад они представляли собой немалое достижение науки и техники. Были они порой замысловаты по конструкции и неказисты. Но! Они были первыми! . читать

История очков
«Глаз… Кто мог бы думать, что столь тесное пространство способно вместить в себе образы всей вселенной?» — Леонардо да Винчи.
Интересно, что очками древнеегипетского фараона Тутанхамона были два тончайших спила изумруда, соединенные бронзовыми пластинками . читать

Сила упругости: закон Гука

Мы с вами знаем, что если на тело действует какая-то сила, то тело будет двигаться под воздействием этой силы. Например, снежинка падает на землю, потому что ее притягивает Земля. И притяжение Земли действует постоянно, но снежинка, достигнув крыши, не продолжает падать, а останавливается, сохраняя наш дом сухим.

С точки зрения чистоты и порядка в доме все правильно и логично, но с точки зрения физики всему должно быть объяснение. И если снежинка перестает вдруг двигаться, значит, должна была появиться сила, которая противодействует ее движению. Эта сила действует в сторону, противоположную притяжению Земли, и равна ей по величине. В физике эта сила, противодействующая силе тяжести, называется силой упругости и изучается в курсе седьмого класса. Разберемся, что же это такое.

Что такое сила упругости?

Для примера, поясняющего, что такое сила упругости, вспомним или представим простую бельевую веревку, на которую мы вешаем мокрое белье. Когда мы вешаем какую-либо мокрую вещь, веревка, до этого натянутая горизонтально, прогибается под весом белья и слегка растягивается. Наша вещица, например, мокрое полотенце, сначала движется к земле вместе с веревкой, потом останавливается. И так происходит при добавлении на веревку каждой новой вещи. То есть, очевидно, что с увеличением силы воздействия на веревку она деформируется вплоть до того момента, пока силы противодействия этой деформации не станут равны весу всех вещей. И тогда движение вниз прекращается. Говоря по-простому, работа силы упругости заключается в том, чтобы сохранять целостность предметов, на которые мы воздействуем другими предметами. И если сила упругости не справляется, то тело деформируется безвозвратно. Веревка рвется, крыша под слишком большим весом снега проваливается и так далее. Когда возникает сила упругости? В момент начала воздействия на тело. Когда мы вешаем белье. И исчезает, когда мы белье снимаем. То есть, когда воздействие прекращается. Точкой приложения силы упругости является та точка, в которой происходит воздействие. Если мы пытаемся сломать палку об колено, то точкой приложения силы упругости будет точка, в которой мы давим на палку коленом. Это вполне понятно.

Как найти силу упругости: закон Гука

Чтобы узнать, как найти силу упругости, мы должны познакомиться с законом Гука. Английский физик Роберт Гук впервые установил зависимость величины силы упругости от деформации тела. Эта зависимость прямо пропорциональная. Чем больше возникает деформация, тем больше сила упругости. То есть формула для силы упругости выглядит следующим образом:

F_упр=k*∆l,

где ∆l – величина деформации,
а k – коэффициент жесткости.

Коэффициент жесткости , естественно, различен для разных тел и веществ. Для его нахождения существуют специальные таблицы. Сила упругости измеряется в Н/м (ньютонах на метр).

Сила упругости в природе

Сила упругости в природе – это стайка воробьев на ветке дерева, грозди ягод на кустах или шапки снега на еловых лапках. Прогибающиеся, но несдающиеся ветви при этом героически и совершенно бесплатно демонстрируют нам силу упругости.

Сила упругости. Закон Гука

При деформации тела возникает сила, которая стремится восстановить прежние размеры и форму тела. Эта сила возникает вследствие электромагнитного взаимодействия между атомами и молекулами вещества. Ее называют силой упругости.

Простейшим видом деформации являются деформации растяжения и сжатия (рис. 1.12.1).

Деформация растяжения (x > 0) и сжатия (x 11 Н/м 2 , а для резины E ≈ 2·10 6 Н/м 2 , т. е. на пять порядков меньше.

Закон Гука может быть обобщен и на случай более сложных деформаций. Например, при деформации изгиба упругая сила пропорциональна прогибу стержня, концы которого лежат на двух опорах (рис. 1.12.2).

Деформация изгиба.

Упругую силу действующую на тело со стороны опоры (или подвеса), называют силой реакции опоры. При соприкосновении тел сила реакции опоры направлена перпендикулярно поверхности соприкосновения. Поэтому ее часто называют силой нормального давления. Если тело лежит на горизонтальном неподвижном столе, сила реакции опоры направлена вертикально вверх и уравновешивает силу тяжести:

Сила с которой тело действует на стол, называется весом тела.

В технике часто применяются спиралеобразные пружины (рис. 1.12.3). При растяжении или сжатии пружин возникают упругие силы, которые также подчиняются закону Гука. Коэффициент k называют жесткостью пружины. В пределах применимости закона Гука пружины способны сильно изменять свою длину. Поэтому их часто используют для измерения сил. Пружину, растяжение которой проградуировано в единицах силы, называют динамометром. Следует иметь в виду, что при растяжении или сжатии пружины в ее витках возникают сложные деформации кручения и изгиба.

Деформация растяжения пружины.

В отличие от пружин и некоторых эластичных материалов (резина) деформация растяжения или сжатия упругих стержней (или проволок) подчиняются линейному закону Гука в очень узких пределах. Для металлов относительная деформация ε = x / l не должна превышать 1 %. При больших деформациях возникают необратимые явления (текучесть) и разрушение материала.

Задачи на тему сила упругости закон гука

В настоящее время на этой странице нет текста. Вы можете найти упоминание данного названия в других статьях, или найти соответствующие записи журналов.

© Автор системы образования 7W и Гипермаркета Знаний — Владимир Спиваковский

При использовании материалов ресурса
ссылка на edufuture.biz обязательна (для интернет ресурсов — гиперссылка).
edufuture.biz 2008-2018© Все права защищены.
Сайт edufuture.biz является порталом, в котором не предусмотрены темы политики, наркомании, алкоголизма, курения и других «взрослых» тем.

Ждем Ваши замечания и предложения на email:
По вопросам рекламы и спонсорства пишите на email:

Презентация на тему «Закон Гука»

  • Скачать презентацию (0.1 Мб)
  • 25 загрузок
  • 0.0 оценка
    • 1
    • 2
    • 3
    • 4
    • 5
    • Аннотация к презентации

      Презентация для школьников на тему «Закон Гука» по физике. pptCloud.ru — удобный каталог с возможностью скачать powerpoint презентацию бесплатно.

      Содержание

      Выполнил: Ушанов Андрей Тема: Закон Гука

      Закон Гука, как противовес силе тяжести Деформация тел Виды деформации Закон Гука Где мы сталкиваемся с этим законом

      Закон Гука, как противовес силе тяжести

      Сила тяжести, которая действует на все тела, никогда не исчезает. Но не всегда это приводит к движению тел. Содержание

      Брусок лежит на столе, снег лежит на крыше, шарик висит на нити- все это подтверждает наше утверждение. Возникает вопрос, почему это происходит? Должна быть другая сила, которая равна по величине силе тяжести, но направлена противоположно ей. Эту силу принято называть силой упругости

      Деформация тел

      Сила упругости возникает при деформации тел Деформация – изменение формы или размеров тела под действием внешних сил. Примеры деформации на основе строения вещества: Растянули пружину – расстояние между молекулами увеличилось, сила притяжения между молекулами тоже увеличились, и пружина стремиться сжаться Сжали пружину – расстояние между молекулами уменьшилось, увеличились силы взаимного отталкивания между молекулами, и пружина стремится вернуть прежнюю форму Содержание

      Виды деформации

      Деформация изгиба Деформация сгиба Деформация кручения Деформация сжатия Деформация растяжения Деформация упругая Деформация пластическая Содержание

      Закон Гука

      Английский ученый Р. Гук в 1660 году установил закон, названный его именем. Сила упругости, возникающая при деформации сжатия, или растяжения, пропорциональна удлинению Fуп= k*x Где x-смещение, k– коэффициент пропорциональности, или коэффициент жесткости Содержание

      Где мы сталкиваемся с этим законом

      С Законом Гука мы сталкиваемся абсолютно везде: Ветер гнет ветви Тело человека Различные предметы, лежащие на опоре Пружины Спортивные луки Батуты Содержание

      Смотрите так же:

      • Коллоидная химия методическое пособие Методическое пособие Тема: Изучение коллоидных растворов Коллоидное состояние характерно для многих веществ, если их частицы имеют размер от 10ˉ 7 до 10ˉ 5 см. Суммарная их поверхность огромна, и она обладает поверхностной энергией, за счет которой может […]
      • Правило клечковского химия пример Правило клечковского химия пример Решение. Значению главного квантового числа последнего энергетического уровня соответствует номер периода, следовательно, элемент находится в 4-м периоде. Сумма валентных электронов показывает номер группы, в которой […]
      • Работа гувернантки с проживанием без посредников Работа без посредников в Сфере обслуживания на RIA.com Опыт работы сборщиком корпусной мебели по индивидуальным заказам у клиента, наличие личного инструмента, чтение технической документации и чертежи; Г-Р свободный, З\П догов. Требуется домработница на […]
      • Закон рф о недрах 2395-1 от 21021992 г Закон рф от 21.02.1992 n 2395-1 (с изм. и доп., вступ. в силу с 01.01.2016) Раздел I. Общие положения Статья 1. Законодательство Российской Федерации о недрах Статья 1.1. Правовое регулирование отношений недропользования Статья 1.2. Собственность на […]
      • Выход на пенсию в психиатрии Стаж для пенсии работнику психбольницы стаж работы в психиатрической больнице. работаю в ГП 3 им скворцова степанова 3 года 10 месяцев.слышала что стаж работы в этой категории исчисляется год за полтора правда ли это. если это так то имею ли я право […]
      • Официальный сайт динского районного суда Динской районный суд Краснодарского края Согласно расписанию Екатеринодарского судебно-мирового округа по мировым участкам, по определению Екатеринодарского съезда мировых судей от 13 декабря 1902 года территория делилась по участкам станицы: […]
      • Следственный комитет 7 отдел Следственное управление по Южному административному округу г.Москвы Адрес: Болотниковская ул., д. 7, корп. 5, Москва, 117556 Телефон: 8 (499) 613-79-46 Руководитель: Лавренев Борис Алексеевич График личного приема: вторник с 09:00-13:00 и с 14:00-18:00. […]
      • Декретные стаж 8 месяцев Правовой Центр «Защита» - более 13 лет на рынке оказания юридических услуг Архив новостей Юридические услуги Методическое пособие Пособия при стаже менее года Вопрос-ответ. Пособия. Пособия при стаже менее года (501) как рассчитать декретные если […]