Закон сохранения энергии примеры в жизни

Закон сохранения энергии в природе. Загрязнение окружающей среды

1. Законы сохранения массы и энергии в макроскопических процессах

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ

Рассмотрим систему, состоящую из N взаимодействующих друг с другом частиц, находящихся под воздействием внешних как консервативных, так и неконсервативных сил. Силы взаимодействия между частицами предполагаются консервативными. Определим работу, совершаемую над частицами при перемещении системы из одного места в другое, сопровождающимся изменением конфигурации системы.

Работа внешних консервативных сил может быть представлена как убыль потенциальной энергии системы во внешнем силовом поле:

где определяется формулой (9).

Работа внутренних сил равна убыли взаимной потенциальной энергии частиц:

,

где – потенциальная энергия системы во внешнем поле сил.

Работу неконсервативных сил обозначим .

Согласно формуле (7) суммарная работа всех сил затрачивается на приращение кинетической энергии системы Ek, которая равна сумме кинетических энергий частиц:

.

Сгруппируем члены этого соотношения следующим образом:

.

Сумма кинетической и потенциальной энергий представляет собой полную механическую энергию системы E:

.

Таким образом, мы установили, что работа неконсервативных сил равна приращению полной энергии системы:

(11)

Из (11) следует, что в случае, когда неконсервативные силы отсутствуют, полная механическая энергия системы остается постоянной:

.

Мы пришли к закону сохранения механической энергии, который гласит, что полная механическая энергия системы материальных точек, находящихся под действием только консервативных сил, остается постоянной.

Если система замкнута и силы взаимодействия между частицами консервативны, то полная энергия содержит только два слагаемых: (— взаимная потенциальная энергия частиц). В этом случае закон сохранения механической энергии заключается в утверждении, что полная механическая энергия замкнутой системы материальных точек, между которыми действуют только консервативные силы, остается постоянной.

В основе закона сохранения энергии лежит однородность времени, т.е. равнозначность всех моментов времени, заключающаяся в том, что замена момента времени t1 моментом времени t2 без изменения значений координат и скоростей тел не изменяет механических свойств системы. Поведение системы, начиная с момента t2, будет таким же, каким оно было бы, начиная с момента t1.

Закон сохранения энергии имеет всеобщий характер. Он применим ко всем без исключения процессам, происходящим в природе. Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую. Этот факт является проявлением не уничтожаемости материи и ее движения.

2. Самоорганизация химических систем и энергетика химических процессов

Способность к взаимодействию различных химических реагентов определяется не только их атомарно-молекулярной структурой, но и условиями протекания химических реакций.

К условиям протекания химических процессов относятся: термодинамические факторы (температура, давление), наличие катализаторов и других добавок к реагентам, влияние растворителей, стенок реакторов и др. Указанные условия могут оказывать воздействие на характер и результат химических реакций при определенной структуре молекул химических соединений. Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Взять, например, реакцию синтеза из азота и водорода. Вначале его не удавалось получить ни с помощью большого давления, ни высокой температуры, и только использование в качестве катализатора специально обработанного железа впервые привело к успеху. В присутствии металлоорганического катализатора синтез аммиака происходит при обычной температуре (18 °С) и нормальном атмосферном давлении. Это открывает большие перспективы не только для производства удобрений, но в будущем такого изменения генной структуры злаков (ржи, пшеницы), когда они не будут нуждаться в азотных удобрениях.

Следует отметить, что возникновение и эволюция жизни на Земле были бы невозможны без существования ферментов, служащих по сути дела живыми катализаторами. Однако, они функционируют только в рамках живой природы. Попытки перенести опыт живой природы на неорганический мир наталкиваются на серьезные ограничения.

Тот факт, что катализ играл решающую роль в процессе перехода от химических систем к биологическим, т.е. на предбиотической стадии эволюции, в настоящее время подтверждается многими данными и аргументами. Наиболее убедительные результаты связаны с опытами по самоорганизации химических систем, которые наблюдали наши ученые Борис Павлович Белоусов и Алексей Михайлович Жаботинский. Их трудами была открыта колебательная химическая реакция. Б.П. Белоусов сделал простой эксперимент. Он приготовил раствор, состоящий из лимонной кислоты (2,0 г.), серной кислоты (1:3) и 20 мл воды. Раствор периодически менял окраску: становился то желтым, то бесцветным. Впервые был открыт «химический маятник». Хотя на несколько лет это открытие было предано забвению, однако в 1970 г. А.М. Жаботинский повторил этот опыт и подтвердил открытие «химического маятника». Такие реакции сопровождаются образованием специфических пространственных и временных структур за счет поступления новых и удаления использованных химических реагентов. Однако в отличие от самоорганизации открытых физических систем в указанных химических реакциях важное значение приобретают каталитические процессы. Роль этих процессов усиливается по мере усложнения состава и структуры химических систем.

В настоящее время открыто более 50 автоволновых химических и биологических реакций, аналогичных реакции Белоусова – Жаботинского, часть из них – цветные или флуоресцентные, что делает возможным непосредственное наблюдение и использование как аналоговых вычислительных устройств. На этом основании некоторые ученые связывают химическую эволюцию с самоорганизацией и саморазвитием каталитических систем. Однако, следует иметь ввиду, что переход к простейшим формам жизни возможен только при особом дифференциальном отборе таких химических элементов и их соединений, которые являются основным строительным материалом для образования биологических систем. В связи с этим достаточно отметить, что из более чем ста химических элементов лишь шесть (С, О2, Н2, S, СО, N), названных органогенами, служат основой для построения живых систем.

Выдающимся достижением химии является открытие цепных реакций еще до того, как в физике был обнаружен радиоактивный распад.

Суть цепной реакции Н.Н. Семенов описывает так: «Энергии кванта достаточно для того, чтобы двухатомная молекула хлора распалась на отдельные атомы. Каждый из них активнее первоначальной молекулы и поэтому легко вступает в реакцию с молекулой водорода. Она также двухатомна (рис.).

Схема цепной химической реакции

Один из атомов вместе с атомом хлора дает молекулу продукта-хлористого водорода, а другой атом водорода остается свободным. Теперь он легко вступает в реакцию с ближайшей молекулой хлора, образуя вторую молекулу хлористого водорода и отдельный атом хлора. Это повторяется много-много раз, возникает как бы длинная цепь реакций. Теория разветвленных цепных реакций дала начало новому направлению исследований – химической физике, дисциплине, промежуточной между физикой и химией.

4.Загрязнение окружающей среды. Атмосфера, вода, почва, пища

Наиболее масштабным и значительным является химическое загрязнение среды несвойственными ей веществами химической природы. Среди них – газообразные и аэрозольные загрязнители промышленно-бытового происхождения. Прогрессирует и накопление углекислого газа в атмосфере. Дальнейшее развитие этого процесса будет усиливать нежелательную тенденцию в сторону повышения среднегодовой температуры на планете. Вызывает тревогу у экологов и продолжающееся загрязнение Мирового океана нефтью и нефтепродуктами, достигшее уже 1/5 его общей поверхности. Нефтяное загрязнение таких размеров может вызвать существенные нарушения газо и водообмена между гидросферой и атмосферой. Не вызывает сомнений и значение химического загрязнения почвы пестицидами и ее повышенная кислотность, ведущая к распаду экосистемы. В целом все рассмотренные факторы, которым можно приписать загрязняющий эффект, оказывают заметное влияние на процессы, происходящие в биосфере.

Разделяют на первичные, поступающие непосредственно в атмосферу, и вторичные, являющиеся результатом превращения последних. Основным источником пирогенного загрязнения на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 70% ежегодно добываемого твердого и жидкого топлива: а) Оксид углерода б) Сернистый ангидрид в) Серный ангидрид г) Сероводород и сероуглерод д) Оксиды азота е) Соединения фтора ж) Соединения хлора.

Аэрозольное загрязнение атмосферы. Аэрозоли – это твердые или жидкие частицы, находящиеся во взвешенном состоянии в воздухе. Твердые компоненты аэрозолей в ряде случаев особенно опасны для организмов, а у людей вызывают специфические заболевания. В атмосфере аэрозольные загрязнения воспринимаются в виде дыма, тумана, мглы или дымки.

Основными источниками искусственных аэрозольных загрязнений воздуха являются ТЭС, которые потребляют уголь высокой зольности, обогатительные фабрики, металлургические, цементные, магнезитовые и сажевые заводы. Постоянными источниками аэрозольного загрязнения являются промышленные отвалы – искусственные насыпи из переотложенного материала, преимущественно вскрышных пород. Источником пыли и ядовитых газов служат массовые взрывные работы.

Химическое загрязнение природных вод

Обычно выделяют химическое, физическое и биологические загрязнения, как неорганической (минеральные соли, кислоты, щелочи, глинистые частицы), так и органической природы (нефть и нефтепродукты, органические остатки, поверхностноактивные вещества, пестициды).

Неорганическое загрязнение. Основными неорганическими (минеральными) загрязнителями пресных и морских вод являются разнообразные химические соединения, токсичные для обитателей водной среды. Это соединения мышьяка, свинца, кадмия, ртути, хрома, меди, фтора. Большинство из них попадает в воду в результате человеческой деятельности.

Органическое загрязнение. Среди вносимых в океан с суши растворимых веществ, большое значение для обитателей водной среды имеют не только минеральные, биогенные элементы, но и органические остатки.

Почвенный покров Земли представляет собой важнейший компонент биосферы Земли. Именно почвенная оболочка определяет многие процессы, происходящие в биосфере.

Одним из видов антропогенного воздействия является загрязнение пестицидами.

Пестициды как загрязняющий фактор. Открытие пестицидов – химических средств защиты растений и животных от различных вредителей и болезней – одно из важнейших достижений современной науки.

Кислые атмосферные выпады на сушу. Одна из острейших глобальных проблем современности и обозримого будущего – это проблема возрастающей кислотности атмосферных осадков и почвенного покрова.

Охрана природы – задача нашего века, проблема, ставшая социальной. Снова и снова мы слышим об опасности, грозящей окружающей среде, но до сих пор многие из нас считают их неприятным, но неизбежным порождением цивилизации и полагают, что мы ещё успеем справится со всеми выявившимися затруднениями.

Однако воздействие человека на окружающую среду приняло угрожающие масштабы. Чтобы в корне улучшить положение, понадобятся целенаправленные и продуманные действия. Ответственная и действенная политика по отношению к окружающей среде будет возможна лишь в том случае, если мы накопим надёжные данные о современном состоянии среды, обоснованные знания о взаимодействии важных экологических факторов, если разработаем новые методы уменьшения и предотвращения вреда, наносимого Природе Человеком.

Закон сохранения энергии

Предмет: Физика

Класс: 10

Тема: «Закон сохранения энергии»

Проблемный вопрос: Как закон сохранения энергии может пригодиться нам в жизни?

Цели: Изучение закона сохранения энергии и получение сведений о его применимости в науке и жизни.

Задачи:

  1. Создать условия для формирования умений, обеспечивающих самостоятельное успешное применение закона сохранения механической энергии в жизни.
  2. Провести опыты, помогающие выяснить, значение закона сохранения энергии в нашей жизни.

Гипотеза: Знание закона сохранения энергии может пригодиться школьникам при решении задач по физике и инженерам на производстве.

Этапы:

  • Изучение литературы, поиск информации в интернете
  • Проведение эксперимента
  • Результаты исследований
  • Выводы
  • I. Изучая различную литературу и информацию в интернете, мы узнали:

    При взаимодействиях тел, образующих замкнутую систему: если несколько тел взаимодействуют между собой только силами тяготения и силами упругости и никакие внешние силы на них не действуют, то при любых взаимодействиях тел работа сил упругости или сил тяготения равна изменению потенциальной энергии тел, взятому с противоположным знаком:

    . (1)

    Вместе с тем по теореме о кинетической энергии работа тех же сил равна изменению кинетической энергии:

    . (2)

    Из сравнения равенств (1) и (2) видно, что изменение кинетической энергии тел в замкнутой системе равно по абсолютному значению изменению потенциальной энергии системы тел и противоположно ему по знаку:

    . (3)

    II. Мы нашли простые иллюстрации закона сохранения энергии:

    Суммарно потенциальная и кинетическая энергия системы тел составляют полную механическую энергию для этой системы тел.Механическая энергия широко известна Человеку с древнейших времен и применяется в таких устройствах, как: стрела, копье, нож, топор, праща, баллиста, повозка, маятник, журавль, ветряная мельница, водяное колесо, парус, гончарный круг, часы, и другие самые разнообразные механизмы…Приведем примеры наиболее распространенных и используемых источников механической энергии:ветер, течение рек, приливы и отливы морей и океанов, сельскохозяйственные животные, и сам человек.Зачастую механическая работа используется как промежуточный этап при выработке электроэнергии. Преобразование механической энергии в электрическую энергию осуществляется генераторами тока. В генераторе происходит превращение вращательного движения вала в электричество. Для вращения вала применяют следующие источники механической энергии: течение рек, океанские и морские приливы-отливы, ветер.Однако основное количество генераторов тока по-прежнему работает на тепловых станциях. Здесь химическая энергия ископаемого топлива преобразуется в тепловую энергию пара, которая затем превращается в электрическую энергию тока – универсальный стандарт, удобный для использования и передачи на большие расстояния.

    1. Рассмотрим закон сохранения механической энергии на примере колебаний нитяного маятника :

    2. IV. Анализ результатов и выводы:

    3. Проведя эксперименты, мы изучили закон сохранения энергии и выявили возможные его применения в повседневной жизни.
    4. Энергия тела никогда не исчезает и не появляется вновь: она лишь превращается из одного вида в другой.
    5. Полностью внутреннюю энергию нельзя превратить в механическую.
    6. Закон сохранения энергии используется не только инженерами, но и в нашей повседневной жизни: наиболее распространенных и используемых источников энергии можно встретить в таких явлениях,как :ветер, течение рек, приливы и отливы морей и океанов.
    7. Мы выяснили, что школьники решая задачи на закон сохранения энергии, могут лучше понять, как применять его в жизни.
    8. Дополнительные материалы:

      Закон сохранения энергии: описание и примеры

      Потенциальная энергия — это, скорее, абстрактная величина, ведь любой предмет, который имеет некоторую высоту над поверхностью Земли, уже будет обладать определенным количеством потенциальной энергии. Она рассчитывается путем умножения скорости свободного падения на высоту над Землей, а также на массу. Если же тело двигается, можно говорить о наличии кинетической энергии.

      Формула и описание закона

      Результат сложения кинетической и потенциальной энергии в закрытой от внешнего воздействия системе, части которой взаимодействуют благодаря силам упругости и тяготения, не изменяется – так звучит закон сохранения энергии в классической механике. Формула данного закона выглядит так: Ек1+Еп1=Ек2+Еп2. Здесь Ек1 является кинетической энергией определенного физического тела в конкретный момент времени, а Еп1 – потенциальной. То же самое верно и для Ек2 и Еп2, но уже в следующий временной промежуток. Но этот закон верен только в том случае, если система, в которой он действует, является замкнутой (или консервативной). Это говорит о том, что значение полной механической энергии не изменяется, когда на систему действуют лишь консервативные силы. Когда в действие вступают неконсервативные силы, часть энергии изменяется, принимая другие формы. Такие системы получили название диссипативных. Закон сохранения энергии работает, когда силы извне никак не действуют на тело.

      Пример проявления закона

      Одним из типичных примеров, иллюстрирующих описанный закон, служит проведение опыта с шариком из стали, который падает на плиту из этого же вещества или на стеклянную, отскакивая от нее примерно на ту же высоту, где он находился до момента падения. Данный эффект достигается за счет того, что когда предмет движется, энергия преобразуется несколько раз. Первоначально значение потенциальной энергии начинает стремиться к нулю, в то время как кинетическая увеличивается, но после столкновения она становится потенциальной энергией упругой деформации шара.

      Это продолжается до момента полной остановки предмета, в который он начинает свое движение вверх за счет сил упругой деформации как плиты, так и упавшего предмета. Но при этом в дело вступает потенциальная энергия тяготения. Так как шарик при этом понимается примерно на ту же высоту, с которой он и упал, кинетическая энергия в нем одна и та же. Кроме этого, сумма всех энергий, действующих на движущийся предмет, остается одинаковой во время всего описанного процесса, подтверждая закон сохранения полной механической энергии.

      Упругая деформация – что это?

      Для того чтобы полностью понять приведенный пример, стоит более подробно разобраться с тем, что такое потенциальная энергия упругого тела – это понятие означает обладание упругостью, позволяющей при деформации всех частей данной системы вернуться в состояние покоя, совершая некоторую работу над телами, с которыми соприкасается физический объект. На работу сил упругости не влияет форма траектории движения, так как работа, совершаемая за счет них, зависит лишь от положения тела в начале и в конце движения.

      Когда действуют внешние силы

      Но закон сохранения не распространяется на реальные процессы, в которых участвует сила трения. В пример можно привести падающий на землю предмет. Во время столкновения кинетическая энергия и сила сопротивления возрастают. Этот процесс не вписывается в рамки механики, так как из-за возрастающего сопротивления повышается температура тела. Из вышесказанного следует вывод о том, что закон сохранения энергии в механике имеет серьезные ограничения.

      Термодинамика

      Первый закон термодинамики гласит: разность между количеством теплоты, накапливаемой благодаря работе, совершаемой над внешними объектами, равна изменению внутренней энергии данной неконсервативной термодинамической системы.

      Но это утверждение чаще всего формулируется в другом виде: количество теплоты, полученное термодинамической системой, тратится на работу, совершаемую над объектами, находящимися вне системы, а также на изменение количества энергии внутри системы. Согласно данному закону, она не может исчезнуть, превращаясь из одной формы в другую. Из этого следует вывод о том, что создание машины, не потребляющей энергии (так называемого вечного двигателя), невозможно, так как система будет нуждаться в энергии извне. Но многие все же настойчиво пытались создать ее, не учитывая закон сохранения энергии.

      Пример проявления закона сохранения в термодинамике

      Опыты показывают, что термодинамические процессы невозможно обратить вспять. Примером тому может служить соприкосновение тел, имеющих различную температуру, при котором более нагретое будет отдавать тепло, а второе — принимать его. Обратный же процесс невозможен в принципе. Другим примером является переход газа из одной части сосуда в другую после открытия между ними перегородки, при условии что вторая часть пуста. Вещество в данном случае никогда не начнет движение в обратном направлении самопроизвольно. Из вышесказанного следует, что любая термодинамическая система стремится к состоянию покоя, при котором ее отдельные части находятся в равновесии и имеют одинаковую температуру и давление.

      Гидродинамика

      Применение закона сохранения в гидродинамических процессах выражается в принципе, описанном Бернулли. Он звучит так: сумма давления как кинестетической, так и потенциальной энергии на единицу объема одна и та же в любой отдельно взятой точке потока жидкости или газа. Это значит, что для измерения скорости потока достаточно измерить давление в двух точках. Делается это, как правило, манометром. Но закон Бернулли справедлив только в том случае, если рассматриваемая жидкость имеет вязкость, которая равна нулю. Для того чтобы описать течение реальных жидкостей, используется интеграл Бернулли, предполагающий добавление слагаемых, которые учитывают сопротивление.

      Электродинамика

      Во время электризации двух тел количество электронов в них остается неизменным, из-за чего положительный заряд одного тела равен по модулю отрицательному заряду другого. Таким образом, закон сохранения электрического заряда говорит о том, что в электрически изолированной системе сумма зарядов ее тел не изменяется. Это утверждение верно и тогда, когда заряженные частицы испытывают превращения. Таким образом, когда сталкиваются 2 нейтрально заряженные частицы, сумма их зарядов все равно остается равной нулю, так как вместе с отрицательно заряженной частицей появляется и положительно заряженная.

      Заключение

      Закон сохранения механической энергии, импульса и момента – фундаментальные физические законы, связанные с однородностью времени и его изотропностью. Они не ограничены рамками механики и применимы как к процессам, происходящим в космическом пространстве, так и к квантовым явлениям. Законы сохранения позволяют получать данные о различных механических процессах без их изучения при помощи уравнений движения. Если какой-то процесс в теории игнорирует данные принципы, то проводить опыты в таком случае бессмысленно, так как они будут нерезультативными.

      Универсальный Закон Сохранения Энергии

      Универсальный Закон Сохранения Энергии звучит следующим образом —

      НИЧТО НЕ ВОЗНИКАЕТ НИОТКУДА И НЕ ИСЧЕЗАЕТ В НИКУДА.

      Фраза всем знакомая ещё из средней школы из уроков физики, там всем нам подробно рассказывали, как происходит векторное взаимодействие энергий, как они компенсируются и так далее.

      Для нашего с вами практического применения надо этот закон сформулировать немного по-другому:

      если вы хотите, чтобы у вас что-то появилось, то, сначала надо отдать некоторое количество энергии из себя, а затем получить взамен то, что соответствует количеству и качеству отданной вами энергии.

      Если вы вдруг захотели, чтобы вас понимали и хорошо к вам относились, надо сначала самому начать понимать и хорошо относиться к другим, и лишь затем у вас появляется шанс получить желаемое отношение.

      Это схема в чистом виде, естественно немного упрощена. Но понимание причин надо начинать именно с таких простых, утрированных примеров, а уж затем переходить к более сложным.

      Продолжаем рассматривать простые примеры. Хотим получить деньги, тема актуальная. Что надо сделать? Провести определённую работу, затратить силы, знание, время, и получить заслуженную денежную компенсацию. Всё просто и понятно.

      Просто так никому ничего не даётся

      В жизни — так почему-то не получается. Почему? Большинство людей хотят поменьше работать и получать побольше. Замечательное желание, если у вас правильно выбрана профессия и вы продолжаете в ней развиваться и совершенствоваться. Если это пытаться реализовать другими способами, что-то похитрее провернуть, где-то обмануть — результат может получиться, но, через некоторое время, всё равно придется затратить дополнительное количество энергии за незаслуженный результат, плюс, разбираться с дополнительными процессами, которые будут требовать обязательной компенсации.

      И чем больше величина полученных денег, тем больше размер необходимой энергии которую вы будете вынуждены затратить. И тут говорить об управлении процессом очень даже сложно. Когда идет нарушение закона, вы не выбираете то, как и где вы будете затрачивать энергию, процессы запущенные ранее будут сами требовать от вас затрат, они возникают без вашего желания и контроля, и кроме головной боли и колоссальных временных затрат не приносят ничего.

      Самый простой пример с лотереями. Если есть желание, посмотрите на судьбы людей, которые получили крупные выигрыши в различных лотереях. Есть даже документальные фильмы по этому поводу.

      Что происходит с человеком? Вдруг, совершенно неожиданно, не затратив ничего, кроме несколько рублей или долларов за билет, человек получает значительную сумму с шестью и более нулями.

      Работу он произвел? Продукт он создал? Пользу он кому-нибудь принёс? Он не сделал ничего полезного и значимого для этого мира. А энергии в виде денежных знаков получил очень даже немало. Что с ним происходит дальше, вы наверное уже догадываетесь. Он начинает за это платить. И тут не придётся выбирать как и кому, ситуации начинают возникать одна за другой, не давая времени на передышку и минимальный анализ. Человек становится полностью зависим от этих денег, и жизнь быстренько превращается в один сплошной кошмар из непредсказуемых событий.

      И чем заканчивают большинство таких «счастливчиков» вы, наверное, догадываетесь.

      А тему лотерей продолжают раскручивать и рекламировать сами организаторы, им это выгодно, они получают хороший доход от таких желающих легких денег. И, что интересно, они становятся своего рода «санитарами леса», залавливая тех, кто не хочет думать, тех кто любит сладкое слово «халява».

      Дальше мы ещё рассмотрим много примеров применения этого закона, а пока постарайтесь на самых простых примерах отследить то, как он работает, и постепенно приступайте к корректировке своих процессов, надо когда-то начинать.

      Другой пример — поиск «второй половинки» для строительства семьи. Задача не из простых, если не знать Универсальные Законы.

      Что получается в обычной ситуации? Человек ищет того, кто его полюбит. Пообщался с одним объектом, вроде не любит, со вторым, та же история, где же найти того, кто сможет тебя любить?

      А начинать-то надо с себя. Если ты умеешь любить, то у тебя все шансы встретить такого же человека, умеющего или желающего научиться любить. А если ты дожидаешься, пока тебя полюбят, не прилагая к этому никаких усилий, в плане собственного развития, то и шансы-то минимальны.

      ПОДОБНОЕ ПРИТЯГИВАЕТ ПОДОБНОЕ

      — это один из аспектов Универсального Закона Сохранения Энергии.

      Схема-то проста: сначала продумать то, что такое любовь, затем приступить к реализации устойчивого умения любить, и, через определённый промежуток времени, подтянется такой же желающий научиться, но противоположного пола, вот и приступайте к строительству семейства.

      Это, как обычно, не озвучивают в широких кругах, поэтому и семей удачных можно по пальцам пересчитать. Даже разделение придумали — либо по любви, либо по расчёту. А тут не надо разделять, надо делать семью и по любви и по расчёту, тогда все шансы на успех, половинными мерами тут обойтись не получится.

      И ещё один простой пример практического применения этого Закона. Если все вокруг сволочи, подойдите к зеркалу, и посмотрите на себя внимательно, сразу получите необходимое количество ответов.

      P.S. Вы можете получать информацию о новых статьях на электронную почту:

      Обнаружили опечатку или ошибку в тексте? Пожалуйста, выделите это слово и нажмите Ctrl+Enter

      Если вы хотите выразить свою БЛАГОДАРНОСТЬ Автору в материальной форме, укажите сумму, выберите способ оплаты и нажмите на кнопочку ПЕРЕВЕСТИ:

      Понравилась статья? Поделитесь со своими друзьями в соцсетях:

      I. Механика

      Тестирование онлайн

      Полная механическая энергия замкнутой системы тел остается неизменной

      Закон сохранения энергии можно представить в виде

      Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение полной механической энергии равно работе сил трения

      Рассмотрим свободное падение тела с некоторой высоты h1. Тело еще не движется (допустим, мы его держим), скорость равна нулю, кинетическая энергия равна нулю. Потенциальная энергия максимальная, так как сейчас тело находится выше всего от земли, чем в состоянии 2 или 3.

      В состоянии 2 тело обладает кинетической энергией (так как уже развило скорость), но при этом потенциальная энергия уменьшилась, так как h2 меньше h1. Часть потенциальной энергии перешло в кинетическую.

      Состояние 3 — это состояние перед самой остановкой. Тело как бы только-только дотронулось до земли, при этом скорость максимальная. Тело обладает максимальной кинетической энергией. Потенциальная энергия равна нулю (тело находится на земле).

      Полные механические энергии равны между собой , если пренебрегать силой сопротивления воздуха. Например, максимальная потенциальная энергия в состоянии 1 равна максимальной кинетической энергии в состоянии 3.

      А куда потом исчезает кинетическая энергия? Исчезает бесследно? Опыт показывает, что механическое движение никогда не исчезает бесследно и никогда оно не возникает само собой. Во время торможения тела произошло нагревание поверхностей. В результате действия сил трения кинетическая энергия не исчезла, а превратилась во внутреннюю энергию теплового движения молекул.

      При любых физических взаимодействиях энергия не возникает и не исчезает, а только превращается из одной формы в другую.

      Главное запомнить

      1) Суть закона сохранения энергии

      Общая форма закона сохранения*

      Общая форма закона сохранения и превращения энергии имеет вид

      Изучая тепловые процессы, мы будем рассматривать формулу
      При исследовании тепловых процессов не рассматривается изменение механической энергии, то есть

      В механике процессы теплопередачи не принимают во внимание, то есть . Если рассматривается физическая система замкнутая, то , получим . А если в замкнутой системе действуют только консервативные силы, то и приходим к формулировке: полная механическая энергия замкнутой системы тел, в которой действуют только консервативные силы, сохраняется.

      Закон сохранения энергии примеры в жизни

      1.20. Закон сохранения механической энергии

      Если тела, составляющие замкнутую механическую систему , взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком:

      По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел (см. §1.19):

      или

      Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.

      Это утверждение выражает закон сохранения энергии в механических процессах . Он является следствием законов Ньютона. Сумму E = E k + E p называют полной механической энергией . Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.

      Пример применения закона сохранения энергии – нахождение минимальной прочности легкой нерастяжимой нити, удерживающей тело массой m при его вращении в вертикальной плоскости (задача Х. Гюйгенса). Рис. 1.20.1 поясняет решение этой задачи.

      Закон сохранения энергии для тела в верхней и нижней точках траектории записывается в виде:

      Обратим внимание на то, что сила натяжения нити всегда перпендикулярна скорости тела; поэтому она не совершает работы.

      При минимальной скорости вращения натяжение нити в верхней точке равно нулю и, следовательно, центростремительное ускорение телу в верхней точке сообщается только силой тяжести:

      Из этих соотношений следует:

      Центростремительное ускорение в нижней точке создается силами и направленными в противоположные стороны:

      Отсюда следует, что при минимальной скорости тела в верхней точке натяжение нити в нижней точке будет по модулю равно

      Прочность нити должна, очевидно, превышать это значение.

      Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.

      В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.

      Сила трения не является консервативной. Работа силы трения зависит от длины пути.

      Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется . Часть механической энергии превращается во внутреннюю энергию тел (нагревание).

      При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.

      Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии .

      Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии (рис. 1.20.2).

      История хранит немалое число проектов «вечного двигателя». В некоторых из них ошибки «изобретателя» очевидны, в других эти ошибки замаскированы сложной конструкцией прибора, и бывает очень непросто понять, почему эта машина не будет работать. Бесплодные попытки создания «вечного двигателя» продолжаются и в наше время. Все эти попытки обречены на неудачу, так как закон сохранения и превращения энергии «запрещает» получение работы без затраты энергии.

      Закон сохранения жизни Ю. Н. Куражковского: «Жизнь может существовать только в процессе движения через живое тело потоков вещества, энергии и информации»

      Раздел 1. Введение в безопасность. Основные понятия, термины и определения

      1.1.Человек и среда обитания

      Понятие «жизнедеятельность». Принцип обязательности внешнего воздействия (основной принцип существования и развития всего живого). Понятие «среда обитания». Закон сохранения жизни Ю.Н. Куражковского. Понятие об основах взаимодействия человека со средой обитания. Характерные системы «человек – среда обитания». Понятие «техносфера».

      3. «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой , причём с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка.». Фридрих Энгельс . «Диалектика природы»

      4. Человек существует в процессе жизнедеятельности, состоящем из его непрерывного взаимодействия со средой обитания в целях удовлетворения своих потребностей.

      ^ 5. Принцип обязательности внешнего воздействия : «Живое тело развивается и существует только при наличии внешних воздействий на него».

      6. Среда обитанияокружающая человека среда, обусловленная в данный момент совокупностью факторов (физических, химических, биологических, информационных, социальных), способных оказывать прямое или косвенное, немедленное или отдалённое воздействие на жизнедеятельность человека, его здоровье и потомство.

      7. Рис.1.1.1. Диаграмма иерархии потребностей человека
      (по А. Маслоу)

      8. Закон сохранения жизни Ю.Н. Куражковского: «Жизнь может существовать только в процессе движения через живое тело потоков вещества, энергии и информации».

      Справка. Куражковский Юрий Николаевич (1923 – 2007) – профессор, доктор биологических наук, почётный член РАЕН, создатель новой науки – природопользование. Разработал методику экологической (бесхимикатной) защиты растений в сельском и лесном хозяйстве (1952-1959); учение о заповедном деле как отрасли научно-практической деятельности (1969, 1977); систему принципов развития комплексного таёжного природопользования (1962-1969); метод массовых исследований, повышающий их эффективность и экономичность (1962-1977); основные положения природопользования как науки и учебного предмета (1965-1969); систему основных зако нов экологии и пути её практического применения (1957-1992); систему количественных оценок экологических условий и на её основе методику составления экологических кадастров; эколого-математическую модель биосферной суши как основы территориального экологического прогнозирования (1979-1992); теорию междисциплинарной всеобщей экологии (1992); учебную дисциплину – российское отечествоведение (1997). Предложил систему мер к преодолению глобального экологического кризиса (1995-1997).

      ^ 1.2. Понятие «опасность»

      Виды опасностей по происхождению; видам потоков в жизненном пространстве; интенсивности потоков в жизненном пространстве; длительности воздействия; видам зон воздействия; размерам зоны воздействия; степени завершенности воздействия; воздействию на человека; численности лиц, подверженных воздействию опасности.
      Опасность – это негативное свойство человека и компонентов окружающей среды причинять ущерб живой и неживой материи.

      Опасности реализуются в виде потоков энергии, вещества и информации, они существуют в пространстве и во времени.

      14. Таблица 1.2.1. Классификация (таксономия) опасностей

      Переменные (в т.ч. периодические)

      Городские (транспортные и др.)

      • Классификация опасностей по происхождению: естественные, техногенные и антропогенные.
      • Естественныеопасности обусловлены климатическими и природными явлениями. Возникают при изменении погодных условий, естественной освещённости в биосфере, а также от природных явлений, происходящих в биосфере (наводнения, землетрясения и т.д.).

        Негативное воздействие на человека и среду обитания, к сожале­нию, не ограничивается естественными опасностями. ^ Человек, решая задачи своего материального обеспечения, непрерывно воздействует на среду обитания своей деятельностью и продуктами деятельности (техническими средствами, выбросами различных производств и т.п.), генерируя в среде обитания техногенные и антропогенные опасности.

        Техногенные опасности создают элементы техносферы – машины, сооружения, вещества и т.п.

        Под техногенной опасностью понимается такое состояние техносферных комплексов и их составляющих, при котором возможны аварии и катастрофы на промышленных и других объектах и угроза жизненно важным элементам личности, обществу и окружающей природной среде становится реальной.

        В настоящее время перечень реально действующих техногенных опасностей значителен и включает более 100 видов. К наиболее распространённым, имеющим достаточно высокий уровень опасности, относятся производственные опасности: запылённость и загазованность воздуха, шум, вибрации, электромагнитные поля, ионизирующие излучения, электрический ток, падающие предметы, движущиеся машины и механизмы, повышенные или пониженные параметры атмосферного воздуха (температуры, влажности, подвижности воздуха, давления), недостаточное и неправильное освещение, монотонность деятельности, тяжелый физический труд и др.

        Вбыту нас сопровождает большая гамма негативных факторов:

        • воздух, загрязнённый продуктами сгорания природного газа, выбросами ТЭС, промышленных предприятий, автотранспорта и мусоросжигающих устройств;
        • вода с избыточным содержанием вредных примесей;
        • недоброкачественная пища;
        • шум, инфразвук;
        • вибрации;
        • электромагнитные поля от бытовых приборов, телевизоров, дисплеев, ЛЭП, радиорелейных устройств;
        • ионизирующие излучения (естественный фон, медицинские обследования, фон от строительных материалов, излучения приборов, предметов быта);
        • медикаменты при избыточном и неправильном потреблении;
        • алкоголь;
        • табачный дым;
        • бактерии;
        • аллергены и др.
        • Антропогенныеопасности возникают в результате ошибочных и несанкционированных действий человека или групп людей.

          По статистике около 45 % аварийных ситуаций на АЭС, 80 % авиакатастроф и катастроф на море, а также до 85 % ДТП происходит из-за неправильных действий людей.

            • Классификация опасностей по длительности воздействия: постоянные, переменные (в т.ч. периодические) и импульсные.

            Постоянные (действуют в течение рабочего дня, суток) опасности, как правило, связаны с условиями пребывания человека в производственных и бытовых помещениях, с его нахождением в городской среде или в промышленной зоне.

            Переменные опасности характерны для условий реализации циклических процессов: шум в зоне аэропорта или около транспортной магистрали; вибрация от средств транспорта и т.п.

            ^ Импульсное, или кратковременное , воздействие опасности характерно для аварийных ситуаций, а также для залповых выбросов, например, при пусках ракет. Многие стихийные явления (гроза, сход лавин и т.п.) также относятся к этой категории опасностей.

            • Классификация опасностей по степени завершённости воздействия опасности:потенциальные, реальные и реализованные.
            • Потенциальная (скрытая) опасность представляет угрозу общего характера, не связанную с пространством и временем воздействия. Например, в выражениях «шум вреден для человека», «углеводородные топлива – пожаровзрывоопасны» говорится только о потенциальной опасности для человека шума и горючих веществ. Многие из опасностей носят скрытый (потенциальный) характер и их необходимо обнаружить (идентифицировать). Под идентификацией опасностей понимают процесс обнаружения и установления количественных, временных, пространственных и иных характеристик, необходимых и достаточных для разработки профилактических и оперативных мероприятий, направленных на обеспечение безопасности жизнедеятельности.

              Реальная опасность – это угроза реализации опасности в конкретной точке пространства. Реальная опасность координирована в пространстве и во времени.

              1) склад горюче-смазочных материалов – всегда реально опасен;

              2) движущаяся по шоссе цистерна с надписью «Огнеопасно» представляют собой реальную опасность для человека, находящегося около автодороги. Как только цистерна ушла из зоны пребывания человека, она превратилась в источник потенциальной опасности по отношению к этому человеку.

              Реализованная опасность – факт воздействия реальной опасности на человека и/или среду обитания, приведшей к потере здоровья или летальному исходу человека, к материальным потерям. Если взрыв автоцистерны привёл к её разрушению, гибели людей и/или возгоранию строений, то это реализованная опасность.

              ^ Потенциальные опасности реализуются в определённых условиях, которые называются причинами. Причины характеризуют совокупность обстоятельств, в результате которых опасности проявляются и вызывают те или иные нежелательные последствия.

              Превращение потенциальной опасности в реальную происходит в результате протекания процесса: опасность → причины → нежелательные последствия. Например:

              (опасность) (причина) (нежелательное последствие)
              Реализованные опасности принято разделять на происшествия, чрезвычайные происшествия, аварии, катастрофы и стихийные бедствия.

              Происшествие событие, состоящее из негативного воздействия с причинением ущерба людским, природным и/или материальным ре­сурсам.

              Чрезвычайное происшествие (ЧП) событие, происходящее обычно кратковременно и обладающее высоким уровнем негативного воздействия на людей, природные и материальные ресурсы. К ЧП относятся крупные аварии, катастрофы и стихийные бедствия.

              Авария происшествие в технической системе, не сопровождаю­щееся гибелью людей, при котором восстановление технических средств невозможно или экономически нецелесообразно.

              Катастрофа происшествие в технической системе, сопровождающееся гибелью людей.

              Стихийное бедствие происшествие, связанное со стихийными явлениями на Земле и приведшее к разрушению биосферы, гибели или потери здоровья людей.

              В результате возникновения ЧП на объектах экономики, в регионах и на иных территориях могут возникать чрезвычайные ситуации.

              Чрезвычайная ситуация (ЧС) состояние объекта, территории или акватории, как правило, после ЧП, при котором возникает угроза жизни и здоровья для группы людей, наносится материальный ущерб населению и экономике, деградирует природная среда.

              • Классификация опасностей по их воздействию на человека:вредные и травмоопасные факторы.
              • Вредный фактор– негативное воздействие на человека, которое приводит к ухудшению самочувствия или заболеванию.

                ^ К наиболее распространенным вредным факторам можно отнести :

                • повышенные или пониженные параметры атмосферного воздуха (температуры, влажности, подвижности воздуха, давления);
                • недостаточное и неправильное освещение;
                • повышен­ные уровни шума, вибрации, электромагнитных излучений, ра­диации;
                • загрязненность воздуха пылью, вредны­ми газами, вредными микроорганизмами, бактериями, вирусами;
                • тяжелый физический труд;
                • монотонность деятельности;
                • загрязненность питьевой воды вредными примесями;
                • недоброкачественная пища;
                • медикаменты при избыточном и неправильном потреблении и т. д.
                • Длительное воздействие на человека вредных факторов может привести к профессиональному/региональному заболеванию. ^ Профессиональное заболевание – это хроническое или острое заболевание работающего, причиной которого явилось воздействие на него вредных производст­венных факторов в процессе трудовой деятельности. Например, длительное воздействие вибрации может вызвать виброболезнь, шума – тугоухость, радиации – лучевую болезнь и т.д.

                  ^ Региональное заболевание – это хроническое или острое заболевание человека, причиной которого явилось воздействие на него вредных факторов среды обитания (прежде всего городской/бытовой среды).

                  Травмирующий (травмоопасный) фактор – негативное воздействие на человека, которое приводит к травме или летальному исходу.

                  Травмаэто повреждение тканей организма и нарушение его (организма) функций, вызванное действием факторов внешней среды.

                  В зависимости от вида травмирующего фактора используют следующую классификацию травм:

                  • механические (нару­шение целостности тканей и органов),
                  • термические (ожоги, об­морожения),
                  • химические (вызванные воздействием химических веществ),
                  • баротравмы (в связи с быстрым изменением давления атмосферного воздуха),
                  • электротравмы (вызванные воздействи­ем электрического тока),
                  • психические (вызванные тяжелым пси­хологическим потрясением, например, в результате гибели на глазах коллеги по работе) и т. д.
                  • Различают производственные и бытовые травмы.

                    ^ Производственная травма – травма, полученная в процессе трудовой деятельности на производстве.

                    Бытовая травма – повреждения в организме человека, не связанные с работой (поездкой на работу или с работы, выпол­нением своих непосредственных производственных обязанно­стей или действий по заданию руководства)

                    Смотрите так же:

                    • Федеральный закон от 2 мая 2006 г n 59-фз изменения Федеральный закон от 2 мая 2006 г. N 59-ФЗ "О порядке рассмотрения обращений граждан Российской Федерации" Федеральный закон от 2 мая 2006 г. N 59-ФЗ"О порядке рассмотрения обращений граждан Российской Федерации" С изменениями и дополнениями от: Одобрен […]
                    • Образец заявления выписка из квартиры через суд Простые правила оформления искового заявления о выписке из квартиры по образцу: пошаговая инструкция Сейчас распространились случаи выписки из жилых помещений граждан через суды. Основания для этого имеются различные, но результат один – лишение места […]
                    • Правила в ворлд оф танк Правила игры WORLD OF TANKS, WORLD OF WARPLANES, WORLD OF WARSHIPS, WORLD OF TANKS BLITZ, WORLD OF TANKS НА XBOX 360, XBOX ONE И XBOX ONE X, WORLD OF TANKS НА PLAYSTATION 4 И PLAYSTATION 4 PRO. Настоящий документ является Правилами игры в отношении следующих […]
                    • Мери кей как оформить заказ Красота и уход за собой Гармония, здоровье, долголетие. Вы — лучшая! Что включить Новичку Мери Кей в свой первый заказ? Стартовый набор «Делюкс» Дорогие девушки, сегодня я решила рассказать вам о том, чтобы я включила в свой первый заказ […]
                    • Сиделка с проживанием казань Поиск работы сиделкой в Казани. Вакансии от прямых работодателей. На сайте НашаНяня.ру вы сможете найти работу, которая подойдёт именно вам! Требуется работа сиделки в Казани без посредников? Специализированный онлайн-сервис НашаНяня.ру создан именно для […]
                    • Правила финансовых потоков Курс лекций "Основы финансового менеджмента" 2.4 Вычисление основных параметров денежных потоков Несмотря на то, что общее количество формул, приведенных в трех предыдущих главах, уже приблизилось к сотне, можно смело утверждать, что это лишь малая часть […]
                    • Обязанности суда в арбитражном процессе Статья 115. Заседание арбитражного суда 1. Разбирательство дела происходит в заседании арбитражного суда. 2. Судья, председательствующий в заседании: открывает заседание арбитражного суда и объявляет, какое дело подлежит проверяет явку лиц, […]
                    • Стаж труда на должности Учет трудового стажа при назначении пенсии При формировании пенсионных отчислений в расчет берут полный период стажа, при отсутствии которого любой человек может остаться без общего объема пенсии. Поэтому в нашем материале поговорим об обязательном периоде […]