Закона сохранения информации

Закон сохранения информации

Автор: Владимир Поляков, RA3AAE

Все статьи на CQHAM.RU
Все статьи категории «В помощь радиолюбителю»

«Ничего нет нового под Луной» (Экклезиаст)
«Шила в мешке не утаишь» (Народная пословица)
«И если, затворившись в пещере, передумаешь три мысли — все равно они станут достоянием всего человечества» (из Ведической литературы)»

В окружающем нас мире предметов, процессов и явлений четко прослеживаются три уровня, ипостаси или плана (название еще не утвердилось): план материальный, план энергетический и план информационный. Сообщение о результатах выборов, например, может придти в глухую отдаленную деревню в виде газетной полосы (на материальном носителе), в виде сообщения по радио (носитель — энергетический) или любым другим способом. Существенно, что полученная информация вовсе не зависит ни от параметров материального носителя (газета, рукописный текст или каменные скрижали — все равно), ни от параметров энергетического (напряженность поля радиостанции может быть как 300 мВ/м, так и 30 мкВ/м, лишь бы была достаточной для приема).

К счастью, благодаря Клоду Шеннону и другим основоположникам теории передачи информации мы научились измерять ее количественно, так же, как давно умеем измерять массу и энергию. Еще в 1748 г. трудами М. В. Ломоносова установлены законы сохранения вещества и движения:

«. Все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимется, столько присовокупится к другому. Сей всеобщий естественный закон простирается и в самые правила движения: ибо тело, движущее своей силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает» (Полное собрание сочинений, т. 3, 1952, с. 383).

Позднее был сформулирован и закон сохранения энергии, гласящий, что энергия любой замкнутой системы при всех происходящих в ней процессах остается постоянной. Энергия может только превращаться из одной формы в другую и перераспределяться между частями системы.
Для незамкнутых систем увеличение или уменьшение энергии равно принятой или переданной энергии другим системам. В современной физике насчитывают довольно много законов сохранения (массы, импульса, момента импульса, энергии, заряда и т. д.). Все они относятся к замкнутым системам (не взаимодействующим с их окружением).

Давайте же, пользуясь методом аналогий, распространим законы сохранения и на информационный план бытия, сформулировав, как гипотезу, закон сохранения информации: в замкнутой системе количество информации остается неизменным.

Правомочность гипотезы в науке принято проверять приложением ее к практике. Дело это нескорое и непростое, но некоторые примеры, как кажется, хорошо иллюстрируют сформулированный закон. Обратимся к близкому и родному — линии передачи информации (см. рисунок).

Оба корреспондента по отдельности, отправитель и получатель, являются, естественно, открытыми системами, поскольку передают и принимают информацию, т. е. взаимодействуют с окружением. Но оба они вместе есть система замкнутая, поскольку взаимодействие происходит внутри нее. Получатель, приняв сообщение, увеличил свою информацию. Если сообщение утеряно, забито шумом и помехами, то ничего страшного — у отправителя то оно осталось. Потому и придуманы протоколы обмена с переспросом, корректирующие коды и тому подобное. Заметим, что отправитель, отослав сообщение, количество своей информации не убавил! По-видимому, в информационном мире несколько иные правила, нежели в энергетическом и материальном. Сообщая информацию, вы ее не теряете, а получая — приобретаете («научился сам — научи другого!»). Но с точки зрения всей замкнутой системы общее количество информации не убавилось, но и не прибавилось, ведь получатель принял то, что уже есть в системе, а заранее известное сообщение (по Шеннону) информации не добавляет. Хотя с узкой точки зрения получателя информации у него прибавилось. Тут, кажется, намечается и «принцип относительности» в информационном мире.

Осмыслив закон сохранения информации, получаем хорошо известный вывод: замкнутые подсистемы, внутри которых произошли уже все возможные передачи сообщений, развиваться и совершенствоваться не могут. Вспомните: «вариться в собственном соку», «загнивающий коллектив» и т. д. Главный принцип развития и совершенствования подсистемы — открытость, способность к обучению, в конечном итоге к обмену, т. е. к передаче и приему информации. Любая радиолюбительская связь — тому подтверждение.

Односторонний обмен, в частности, «работа только на прием», иногда тоже не спасает. Пример: за годы «железного занавеса» отечественная радиоэлектроника почти безнадежно отстала от мировой, хотя «работа на прием» шла во всю и «цельнотянутые» серии радиоламп, транзисторов и микросхем выпускаются до сих пор. Американцы не единожды, и даже в конгрессе поднимали вопрос, не наносит ли ущерб стране открытость публикаций в технических журналах и иных изданиях? Теперь, когда гонка технологий ими выиграна, ответ получен. Ущерба и не должно быть, ведь отдавая информацию, ее не теряешь. Конечно, есть и другие немаловажные причины нашего отставания. Не затрагивая общественно-политических, упомянем лишь закрытость, связанную с чрезмерной секретностью.

Не убывание информации при ее передаче широко используют в библиотеках, банках данных, справочниках. Вопрос хранения — особый. Можно ли утерять информацию? Для мелких подсистем — да. Люди забывают, библиотечные фонды списывают и уничтожают, магнитные ленты и диски стирают. Но стоит раздвинуть границы системы шире (см. рисунок), как мы видим, что в расширенной системе информация сохраняется. Забытый телефон можно переспросить, утерянные сведения — восстановить по первоисточникам и т. д. Широкий обмен способствует сохранению информации («слово не воробей, поймают, и вылетишь!»).

Здесь надо бы различить, перефразируя Иммануила Канта («вещь в себе» и «вещь для нас»), понятия информации вообще, и информации, осмысленной нами. Последняя и приобретается и теряется, первая — нет. «Рукописи не горят». Разве законы тяготения не существовали задолго до Ньютона? И разве любое падающее яблоко не несло информацию о них? Просто Исаак Ньютон осмыслил их и представил в сжатой и понятной научному миру форме. В этом и состоит открытие. Индусы говорят больше: «каждый встреченный тобой человек — твой Великий Учитель».

Конечно, котенок, догрызающий рыбьи косточки на газетке с результатами выборов, политической информацией вовсе не интересуется, да и понять ее не может — для него этой информации как бы и нет, но ведь она есть! Не утихают споры о том, несут ли важнейшую информацию формы и размеры египетских пирамид, фигур в пустыне Наска, сооружений Стоунхеджа, древних наскальных изображений. Мы сейчас не решим этих вопросов, но подумать то есть над чем! Утерянную информацию восстанавливают, размывая иконы, читая берестяные грамоты, в конце концов, открывая заново. Расшифровали же письмена древних Майя!

Закончим эти заметки, добавив немного мистики, благоговейного ужаса и религии. Раз информация сохраняется, то «ничего нет тайного, что не стало бы явным». Не позавидуешь подлецам и преступникам: «Есть Божий суд, наперсники разврата!». Опыт показывает, что даже строжайшие тайны Второй Мировой теперь уже никакие не секреты, а пресловутую «Энгиму» современные шифровальщики считают детским лепетом. Если уж государственные тайны не сохраняются, что уж говорить о семейных и личных! Выходит, правы христиане, утверждающие, что есть Книга Бытия, где записана вся информация о любых наших поступках, хороших и плохих, и правы индуисты и буддисты, открывшие закон кармы, по которому любой поступок с неизбежностью вызывает соответствующее ему следствие. «По делам их судите их» — сказал Христос, а суд и воздаяние по заслугам рано или поздно осуществляются неотвратимо, поскольку действует во всей Вселенной закон сохранения информации.

От автора. Статья была написана 10 лет назад, а изложенные в ней мысли появились гораздо раньше. Опубликовать их в изданиях того времени не представлялось возможным. Но в 1996 г. вышел журнал Chip News, где стали появляться мистические заметки по мотивам Карлоса Кастанеды. Статья была немедленно отпечатана на машинке (компьютера у меня еще не было) и отдана туда. К сожалению, ни ответа, ни публикации не последовало. Но, снова цитирую, «рукописи не горят!». Теперь огромное значение приобрел Интернет, явление, чрезвычайно интересное с философской точки зрения. Суммарный объем выкладываемой информации неудержимо растет, а разработчики создают все более совершенные накопители информации, вмещающие этот объем! Это еще одно подтверждение закона сохранения информации. Прочитайте внизу страницы любого форума:

— Вы можете добавлять свои сообщения.
— Вы можете. (еще много чего).
— Вы не можете удалять свои сообщения.

Воистину «что написано пером, не вырубишь топором». Когда появились первые авторучки (вечные перья), сочинили поговорку: «Раньше гусиными перьями писали вечные мысли, теперь же вечными перьями пишут . мысли!». Что бы сказал автор поговорки, освоив современный компьютер? Помните, любители флейма, ваши сообщения останутся в вечности! Позвольте и мне воспользоваться Интернетом, чтобы сохранить гипотезу о законе сохранения информации.

03 апреля 2006 г. Владимир Поляков, RA3AAE.

Закон сохранения массы

Закон сохранения массы.

Масса веществ, вступающих в химическую реакцию, равна массе веществ, образующихся в результате реакции.

Закон сохранения массы является частным случаем общего закона природы – закона сохранения материи и энергии. На основании этого закона химические реакции можно отобразить с помощью химических уравнений, используя химические формулы веществ и стехиометрические коэффициенты, отражающие относительные количества (число молей) участвующих в реакции веществ.

Например, реакция горения метана записывается следующим образом:

Закон сохранения массы веществ

(М.В.Ломоносов, 1748 г.; А.Лавуазье, 1789 г.)

Масса всех веществ, вступивших в химическую реакцию, равна массе всех продуктов реакции.

Атомно-молекулярное учение этот закон объясняет следующим образом: в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (т.е. химическое превращение- это процесс разрыва одних связей между атомами и образование других, в результате чего из молекул исходных веществ получаются молекулы продуктов реакции). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Под массой понимали величину, характеризующую количество материи.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (А.Эйнштейн, 1905 г.), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массы mсоотношением E = m • c 2 , где с — скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы на

10 -11 г и mпрактически не может быть измерено. В ядерных реакциях, где Е в

10 6 раз больше, чем в химических реакциях, m следует учитывать.

Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Он является основой количественного химического анализа.

Закон постоянства состава

Закон постоянства состава (Ж.Л. Пруст, 18011808гг.) — любое определенное химически чистое соединение независимо от способа его получения состоит из одних и тех же химических элементов, причем отношения их масс постоянны, а относительные числа их атомов выражаются целыми числами. Это один из основных законов химии.

Закон постоянства состава не выполняется для бертоллидов (соединений переменного состава). Однако условно для простоты состав многих бертоллидов записывают как постоянный. Например, состав оксида железа(II) записывают в виде FeO (вместо более точной формулы Fe1-xO).

ЗАКОН ПОСТОЯНСТВА СОСТАВА

Согласно закону постоянства состава, всякое чистое вещество имеет постоянный состав независимо от способа его получения. Так, оксид кальция можно получить следующими способами:

Независимо от того, каким способом получено вещество СаО, оно имеет постоянный состав: один атом кальция и один атом кислорода образуют молекулу оксида кальция СаО.

Определяем молярную массу СаО:

Определяем массовую долю Са по формуле:

Вывод: В химически чистом оксиде массовая доля кальция всегда составляет 71,4% и кислорода 28,6%.

Закон кратных отношений

Закон кратных отношений — один из стехиометрических законов химии: если два вещества (простых или сложных) образуют друг с другом более одного соединения, то массы одного вещества, приходящиеся на одну и ту же массу другого вещества, относятся как целые числа, обычно небольшие.

1) Состав оксидов азота (в процентах по массе) выражается следующими числами:

Разделив числа нижней строки на 0,57, видим, что они относятся как 1:2:3:4:5.

2) Хлористый кальций образует с водой 4 кристаллогидрата, состав которых выражается формулами: CaCl2·H2O, CaCl2·2H2O, CaCl2·4H2O, CaCl2·6H2O, т. е. во всех этих соединениях массы воды, приходящиеся на одну молекулу CaCl2, относятся как 1: 2: 4: 6.

Закон объемных отношений

(Гей-Люссак, 1808 г.)

«Объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа».

Следствие.Стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества.

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

b) При синтезе аммиака из элементов:

Один объем азота реагирует с тремя объемами водорода; образуется при этом 2 объема аммиака — объем исходной газообразной реакционной массы уменьшится в 2 раза.

Если записать объединенный газовый закон для любой массы любого газа, то получается уравнение Клайперона-Менделеева:

где m — масса газа; M — молекулярная масса; p — давление; V — объем; T — абсолютная температура (°К); R — универсальная газовая постоянная (8,314 Дж/(моль • К) или 0,082 л атм/(моль • К)).

Для данной массы конкретного газа отношение m / M постоянно, поэтому из уравнения Клайперона-Менделеева получается объединенный газовый закон.

Какой объем займет при температуре 17°C и давлении 250 кПа оксид углерода (II) массой 84 г?

Количество моль CO равно:

(CO) = m(CO) / M(CO) = 84 / 28 = 3 моль

Объем CO при н.у. составляет

3 • 22,4 л = 67,2 л

Из объединенного газового закона Бойля-Мариотта и Гей-Люссака:

V(CO) = (P0 • T • V0) / (P • T0) = (101,3 • (273 + 17) • 67,2) / (250 • 273) = 28,93 л

Относительная плотность газов показывает, во сколько раз 1 моль одного газа тяжелее (или легче) 1 моля другого газа.

Средняя молекулярная масса смеси газов равна общей массе смеси, деленной на общее число молей:

ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ: в изолир. системе энергия системы остается постоянной, возможны лишь переходы одного вида энергии в другой. В термодинамике сохранения энергии закону соответствует первое начало термодинамики, к-рое выражается ур-нием Q = DU + W, где Q-кол-во сообщенной системе теплоты, DU-изменение внутр. энергии системы, W — совершенная системой работа. Частный случай сохранения энергии закона-Гесса закон.

Понятие энергии подверглось пересмотру в связи с появлением теории относительности (А. Эйнштейн, 1905): полная энергия E пропорциональна массе т и связана с ней соотношением Е = тс2, где с-скорость света. Поэтому массу можно выражать в единицах энергии и сформулировать более общий закон сохранения массы и энергии: в изо-лир. системе сумма масс и энергии постоянна и возможны лишь превращения в строго эквивалентных соотношениях одних форм энергии в другие и эквивалентно связанные друг с другом изменения массы и энергии.

вещества взаимодействуют друг с другом в количествах, пропорциональных их эквивалентам. При решении некоторых задач удобнее пользоваться другой формулировкой этого закона: массы (объемы) реагирующих друг с другом веществ пропорциональны их эквивалентным массам (объемам).

эквивалентов: химические элементы соединяются друг с другом в строго определенных количествах, соответствующих их эквивалентам. Математическое выражение закона эквивалентов имеет следующий вид: где m1 и m2 — массы реагирующих или образующихся веществ, m экв(1) и m экв(2) — эквивалентные массы этих веществ.

Например: некоторое количество металла, эквивалентная масса которого равна 28г/моль, вытесняет из кислоты 0,7 л водорода, измеренного при нормальных условиях. Определить массу металла. Решение: зная, что эквивалентный объем водорода равен 11,2 л/моль, составляет пропорцию: 28 г металла эквивалентны 11,2 л водорода х г металла эквивалентны 0,7 л водорода. Тогда х=0,7*28/11,2= 1,75 г.

Для определения эквивалента или эквивалентной массы необязательно исходить из его соединения с водородом. Их можно определить по составу соединения данного элемента с любым другим, эквивалент которого известен.

Например: при соединении 5,6 г железа с серой образовалось 8,8 г сульфида железа. Нужно найти эквивалентную массу железа и его эквивалент, если известно, что эквивалентная масса серы равна 16 г/моль. Решение: из условия задачи следует, что в сульфиде железа на 5,6 г железа приходится 8,8-5,6=3,2 г серы. Согласно закону эквивалентов, массы взаимодействующих веществ пропорциональны их эквивалентным массам, то есть 5,6 г железа эквивалентны 3,2 г серы mэкв (Fе) эквивалентна 16 г/моль серы. Отсюда следует, что m3KB(Fe) = 5,6*16/3,2=28 г/моль. Эквивалент железа равен: 3=mэкв(Fe)/M(Fe)=28 г/моль:56 г/моль=1/2. Следовательно, эквивалент железа равен 1/2 моля, то есть в 1 моле железа содержится 2 эквивалента.

Первое следствие из закона Авогадро: один мольлюбого газа при одинаковых условиях занимает одинаковый объём.

В частности, при нормальных условиях, т. е. при 0 °C (273К) и 101,3 кПа, объём 1 моля газа, равен 22,4 л. Этот объём называют молярным объёмом газа Vm. Пересчитать эту величину на другие температуру и давление можно с помощью уравнения Менделеева-Клапейрона:

.

Второе следствие из закона Авогадро: молярная масса первого газа равна произведению молярной массы второго газа на относительную плотность первого газа по второму.

Положение это имело громадное значение для развития химии, так как оно дает возможность определять частичный вес тел, способных переходить в газообразное или парообразное состояние. Если через m мы обозначим частичный вес тела, и через d — удельный вес его в парообразном состоянии, то отношение m / d должно быть постоянным для всех тел. Опыт показал, что для всех изученных тел, переходящих в пар без разложения, эта постоянная равна 28,9, если при определении частичного веса исходить из удельного веса воздуха, принимаемого за единицу, но эта постоянная будет равняться 2, если принять за единицуудельный весводорода. Обозначив эту постоянную, или, что то же, общий всем парам и газам частичный объём черезС, мы из формулы имеем с другой стороны m = dC. Так как удельный вес параопределяется легко, то, подставляя значениеd в формулу, выводится и неизвестный частичный вес данного тела.

Тепловой эффект химической реакции

Материал из Википедии — свободной энциклопедии

Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.

Чтобы тепловой эффект являлся величиной, зависящей только от характера протекающей химической реакции, необходимо соблюдение следующих условий:

Реакция должна протекать либо при постоянном объёме Qv(изохорный процесс), либо при постоянном давлении Qp(изобарный процесс).

В системе не совершается никакой работы, кроме возможной при P = const работы расширения.

Если реакцию проводят при стандартных условиях при Т = 298,15 К = 25 ˚С и Р = 1 атм = 101325 Па, тепловой эффект называют стандартным тепловым эффектом реакции или стандартной энтальпией реакции ΔHr O . В термохимии стандартный тепловой эффект реакции рассчитывают с помощью стандартных энтальпий образования.

Стандартная энтальпия образования (стандартная теплота образования)

Под стандартной теплотой образования понимают тепловой эффект реакции образования одного моля вещества из простых веществ, его составляющих, находящихся в устойчивыхстандартных состояниях.

Например, стандартная энтальпия образования 1 моль метана из углерода и водорода равна тепловому эффекту реакции:

Стандартная энтальпия образования обозначается ΔHf O . Здесь индекс f означает formation (образование), а перечеркнутый кружок, напоминающий диск Плимсоля [1] — то, что величина относится к стандартному состоянию вещества. В литературе часто встречается другое обозначение стандартной энтальпии — ΔH298,15 0 , где 0 указывает на равенство давления одной атмосфере [2] (или, несколько более точно, на стандартные условия [3] ), а 298,15 — температура. Иногда индекс 0 используют для величин, относящихся к чистому веществу, оговаривая, что обозначать им стандартные термодинамические величины можно только тогда, когда в качестве стандартного состояния выбрано именно чистое вещество [4] . Стандартным также может быть принято, например, состояние вещества в предельно разбавленном растворе. «Диск Плимсоля» в таком случае означает собственно стандартное состояние вещества, независимо от его выбора.

Энтальпия образования простых веществ принимается равной нулю, причем нулевое значение энтальпии образования относится к агрегатному состоянию, устойчивому при T = 298 K. Например, для йода в кристаллическом состоянии ΔHI2(тв) 0 = 0 кДж/моль, а для жидкого йода ΔHI2(ж) 0 = 22 кДж/моль. Энтальпии образования простых веществ при стандартных условиях являются их основными энергетическими характеристиками.

Тепловой эффект любой реакции находится как разность между суммой теплот образования всех продуктов и суммой теплот образования всех реагентов в данной реакции (следствиезакона Гесса):

Термохимические эффекты можно включать в химические реакции. Химические уравнения в которых указано количество выделившейся или поглощенной теплоты, называются термохимическими уравнениями. Реакции, сопровождающиеcя выделением тепла в окружающую среду имеют отрицательный тепловой эффект и называются экзотермическими. Реакции, сопровождающиеся поглощением тепла имеют положительный тепловой эффект и называются эндотермическими. Тепловой эффект обычно относится к одному молю прореагировавшего исходного вещества, стехиометрический коэффициент которого максимален.

Температурная зависимость теплового эффекта (энтальпии) реакции

Чтобы рассчитать температурную зависимость энтальпии реакции, необходимо знать мольные теплоемкости веществ, участвующих в реакции. Изменение энтальпии реакции при увеличении температуры от Т1 до Т2 рассчитывают по закону Кирхгофа (предполагается, что в данном интервале температур мольные теплоемкости не зависят от температуры и нет фазовых превращений):

Если в данном интервале температур происходят фазовые превращения, то при расчёте необходимо учесть теплоты соответствующих превращений, а также изменение температурной зависимости теплоемкости веществ, претерпевших такие превращения:

где ΔCp(T1,Tf) — изменение теплоемкости в интервале температур от Т1 до температуры фазового перехода; ΔCp(Tf,T2) — изменение теплоемкости в интервале температур от температуры фазового перехода до конечной температуры, и Tf — температура фазового перехода.

Стандартная энтальпия сгорания

Стандартная энтальпия сгорания — ΔHгор о , тепловой эффект реакции сгорания одного моля вещества в кислороде до образования оксидов в высшей степени окисления. Теплота сгорания негорючих веществ принимается равной нулю.

Стандартная энтальпия растворения

Стандартная энтальпия растворения — ΔHраств о , тепловой эффект процесса растворения 1 моля вещества в бесконечно большом количестве растворителя. Складывается из теплоты разрушения кристаллической решетки и теплоты гидратации (или теплоты сольватации для неводных растворов), выделяющейся в результате взаимодействия молекул растворителя с молекулами или ионами растворяемого вещества с образованием соединений переменного состава — гидратов (сольватов). Разрушение кристаллической решетки, как правило, эндотермический процесс — ΔHреш > 0, а гидратация ионов — экзотермический, ΔHгидр о = ΔHреш о + ΔHгидрК +о + ΔHгидрOH −о = −59 КДж/моль

Под энтальпией гидратации — ΔHгидр, понимается теплота, которая выделяется при переходе 1 моля ионов из вакуума в раствор.

Стандартная энтальпия нейтрализации

Стандартная энтальпия нейтрализации — ΔHнейтр о энтальпия реакции взаимодействия сильных кислот и оснований с образованием 1 моля воды при стандартных условиях:

HCl + NaOH = NaCl + H2O

H + + OH − = H2O, ΔHнейтр° = −55,9 кДж/моль

Стандартная энтальпия нейтрализации для концентрированных растворов сильных электролитов зависит от концентрации ионов, вследствие изменения значения ΔHгидратации° ионов при разбавлении.

Энтальпия — это свойство вещества, указывающее количество энергии, которую можно преобразовать в теплоту.

Энтальпия — это термодинамическое свойство вещества, которое указывает уровень энергии, сохраненной в его молекулярной структуре. Это значит, что, хотя вещество может обладать энергией на основании температуры и давления, не всю ее можно преобразовать в теплоту. Часть внутренней энергии всегда остается в веществе и поддерживает его молекулярную структуру. Часть кинетической энергии вещества недоступна, когда его температура приближается к температуре окружающей среды. Следовательно, энтальпия — это количество энергии, которая доступна для преобразования в теплоту при определенной температуре и давлении.Единицы энтальпии — британская тепловая единица или джоуль для энергии и Btu/lbm или Дж/кг для удельной энергии.

Количество энтальпии вещества основано на его данной температуре. Данная температура — это значение, которая выбрано учеными и инженерами, как основание для вычислений. Это температура, при которой энтальпия вещества равна нулю Дж. Другими словами, у вещества нет доступной энергии, которую можно преобразовать в теплоту. Данная температура у различных веществ разная. Например, данная температура воды — это тройная точка (О °С), азота −150°С, а хладагентов на основе метана и этана −40°С.

Если температура вещества выше его данной температуры или изменяет состояние на газообразное при данной температуре, энтальпия выражается положительным числом. И наоборот при температуре ниже данной энтальпия вещества выражается отрицательным числом. Энтальпия используется в вычислениях для определения разницы уровней энергии между двумя состояниями. Это необходимо для настройки оборудования и определения коэффициента полезного действия процесса.

Энтальпию часто определяют как полную энергию вещества, так как она равна сумме его внутренней энергии (и) в данном состоянии наряду с его способностью проделать работу (pv). Но в действительности энтальпия не указывает полную энергию вещества при данной температуре выше абсолютного нуля (-273°С). Следовательно, вместо того, чтобы определять энтальпию как полную теплоту вещества, более точно определять ее как общее количество доступной энергии вещества, которое можно преобразовать в теплоту. H = U + pV

Вну́тренняя эне́ргия тела (обозначается как E или U) — это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

—подведённая к телу теплота, измеренная в джоулях

[1]работа, совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

Для квазистатических процессов выполняется следующее соотношение:

температура, измеренная в кельвинах

энтропия, измеренная в джоулях/кельвин

давление, измеренное в паскалях

химический потенциал

—количество частиц в системе

Согласно закону Джоуля, выведенному эмпирически, внутренняя энергия идеального газа не зависит от давления или объёма. Исходя из этого факта, можно получить выражение для изменения внутренней энергии идеального газа. По определению молярной теплоёмкости при постоянном объёме, . Так как внутренняя энергия идеального газа является функцией только от температуры, то

.

Эта же формула верна и для вычисления изменения внутренней энергии любого тела, но только в процессах при постоянном объёме (изохорных процессах); в общем случае CV(T,V) является функцией и температуры, и объёма.

Если пренебречь изменением молярной теплоёмкости при изменении температуры, получим:

где ν — количество вещества, ΔT — изменение температуры.

ВНУТРЕННЯЯ ЭНЕРГИЯ ВЕЩЕСТВА, ТЕЛА, СИСТЕМЫ

(Греч.: ένέργια — деятельность, энергия). Внутренняя энергия — это часть полной энергии тела (системы тел): E = Ek + Ep + U, где Ekкинетическая энергиямакроскопического движения системы, Epпотенциальная энергия, обусловленная наличием внешних силовых полей(гравитационного, электрического и т.д.), U — внутренняя энергия. Внутренняя энергия вещества, тела, системы тел — функция состояния, определяемая как полный запас энергии внутреннего состояния вещества, тела, системы, изменяющийся (высвобождающийся) в процессе химической реакции, теплообмена и выполнения работы. Составляющие внутренней энергии: (а) кинетическая энергия теплового вероятностного движения частиц (атомов, молекул, ионов и др.), составляющих вещество (тело, систему); (б) потенциальная энергия частиц, обусловленная их межмолекулярным взаимодействием; (в) энергия электронов в электронных оболочках, атомов и ионов; (г) внутриядерная энергия. Внутренняя энергия не связана с процессом изменения состояния системы. При любых изменениях системы внутренняя энергия системы вместе с ее окружением остается постоянной. То есть внутренняя энергия не утрачивается и не приобретается. Вместе с тем, энергия может переходить от одной части системы к другой или превращаться из одной формы в другую. Это одна из формулировок закона сохранения энергии — первый закон термодинамики. Часть внутренней энергии, может превращаться в работу. Эту часть внутренней энергии называют свободной энергией — G. (В химических соединениях ее называют химическим потенциалом). Остальную часть внутренней энергии, которая не может превращаться в работу, называют связанной энергией — Wb.

Энтропи́я (от греч. ἐντροπία — поворот, превращение) в естественных науках — мера беспорядка системы, состоящей из многих элементов. В частности, в статистической физикемера вероятности осуществления какого-либо макроскопического состояния; в теории информации — мера неопределённости какого-либо опыта (испытания), который может иметь разные исходы, а значит и количество информации; в исторической науке, для экспликации феноменаальтернативности истории (инвариантности и вариативности исторического процесса).

Закон сохранения информации в дидактике

Закон сохранения информации в дидактике

Левичев Олег Федорович, к.п.н., доцент ИРООО

«От законов природы никуда не укроешься«. Менандр, IV век до н.э.

«Природа осуществляет всегда наилучшую из всех возможностей». Аристотель

Только заблуждение нуждается в искусственной поддержке, истина может стоять одна Восточная мудрость

В статье рассматривается возможность применение «сквозных законов» в дидактике при сохранении их симметрии. Дано определение закону сохранения информации для теории обучения. Представлен механизм закона сохранения информации, состоящий из этапов: новизна, преемственность и инертность. Прописаны требования для успешной реализации закона сохранения информации.

Слово «кибернетика» возникло в Древней Греции. Впервые его произнес задолго до нашей эры философ Платон, произведя его от греческого слова «кибернус», что означало «кормчий». В середине ХХ века новый смысл в это понятие вложил математик Н. Винер. И кибернетика стала — наукой об управлении сложными динамическими системами и процессами. Объектом изучения этой науки являются системы любой природы, способные воспринимать, хранить и перерабатывать информацию и использовать её для управления и регулирования. Система (с греческого: составленное из частей, соединение) является одним из основных понятий кибернетики.

Появление кибернетики — науки об общих закономерностях в процессах управления, осуществляемых в живых существах, и их комплексах , — позволило собрать и обобщить огромное количество фактов, которые показали, что процесс управления во всех организованных системах сходен. Различие в управлении объектами касаются критериев цели, задач и содержания управления. Однако структура и построение процессов управления в организованных системах любых рангов имеют черты глубокого сходства, общности. Это обстоятельство объясняется тем, что процесс управления всегда представляет собой информационный процесс. Норберт Винер обосновал необходимость подхода к «Информации» как к общему явлению, имеющему значение для существования природы, человека и общества. Законы и закономерности кибернетики как науки преобразования и использования информации, стали частично использоваться и в педагогике, например, кибернетические закономерности в дидактике:

1. Эффективность обучения (в известных пределах) прямо пропорциональна частоте и объему обратной связи.

2. Качество знаний зависит от эффективности контроля. Частота контроля есть функция от продолжительности обуче­ния:

где N — число наблюдаемых оценок, а — число учащихся, под­вергнутых инспектированию, S — число уроков по учебному плану за инспектируемый период (Г.В. Воробьев).

3. Качество обучения прямо пропорционально качеству управления учебным процессом.

4. Эффективность управления находится в прямой пропор­циональной зависимости от количества и качества управляю­щей информации, состояний и возможностей учащихся, вос­принимающих и перерабатывающих управляющие воздействия.

5. Продуктивность обучения повышается, если модель дей­ствия, которое необходимо выполнить, — «программа движе­ний» и ее результаты — «программа цели» опережают в мозгу саму деятельность (П.К. Анохин).

Особенно актуально использование законов кибернетики, на наш взгляд, в создании обновленной теории обучения, где субъекты образовательного процесса так же воспринимают, хранят и перерабатывают информацию для своего использования.

Дидактика — это педагогическая теория обучения, дающая на­учное обоснование его содержания, методов и организаци­онных форм. Дидактика как педагогическая теория должна дать ответ на вопрос: «Как протекает обучение, какие свойственны ему законы?»

Процесс обучения, в который протекает во времени и пространстве, следовательно, законы времени, пространства и причинности, возможно, использовать для эффективного обучения. Учителя и ученики являются субъектами образовательного процесса, субъектность человека говорит о том, что он активно участвует в преобразовании окружающей действительности, сам выбирает методы приемы, средства обучения и использует их. Т.е. ученик, получая информацию от учителя на уроке, должен ее сохранить. Процент сохранения информации (качество, количество запоминания), зависит от осознанной деятельности данного ученика, а не реализуемых педагогических технологий учителем. Встает вопрос: «Может ли ученик сохранить полученную информацию в сознании, если он и понятия не имеет, какие педагогические технологии реализует педагог в отношении его развития? Если он не представляет, как применять методы сохранения информации в своем сознании?»

Встает проблема: Педагог научился преобразовывать информацию (учебную материал) при помощи определенной педагогической технологией и пытается донести преобразованную им информацию до ученика. Ученик, получая данную информацию, снова ее преобразует, делает это не осознанно, интуитивно т.к. не знает механизма сохранения информации. Где субъектность ученика? На наш взгляд, субъектом он будет только тогда, когда знает и применяет закон сохранения информации, сам выбирает механизм преобразования информации, а не занимается спонтанным преобразованием преобразованной информацией или перекодированием.

Для осознанного преобразования информации учеником, педагогу необходимо организовать процесс обучения так, что бы ученик, смог задать себе вопросы: «Какие условия необходимы для эффективной реализации закона сохранения информации? Какие принципы нужно использовать на уроке для проявления закона сохранения информации? Какие методы, приемы характерны применению закона сохранению информации на учебном занятии? Когда он задаст эти вопросы и найдет на них ответ — обучение будет эффективное.

Для организации такого процесса обучения, на наш взгляд, необходимо в дидактику ввести принцип – законности. Рассмотрим его суть: термин «принцип – законности» не сет идею, что использование законов в процессе обучения должно быть принципом самого обучения.

В литературе под принципом понимают (лат. principium — основа, первоначало) первоначало, руководящую идею, основное правило поведения. Принцип, обусловливает необходимость, закон становления явлений. В критической философии понятие принципа означает первое положение, исходную точку и основания (принципы обоснования и объяснения). В этике принцип рассматривается как внутреннее убеждение, максима (принцип действия, мышления) задает общую установку по отношению к действительности, нормам поведения и деятельности.

Учитывая, вышеизложенное, можно сделать вывод, что использование «принцип — законности» в педагогике, образовательный процесс будет представлять функционирующую по законам пространства и времени систему, где обучение тождественно законам причинности .

Попытаемся раскрыть суть нашего вывода и рассмотрим ключевое понятие — закон. Закон – философская категория, отображающая существенную, необходимую, устойчивую, повторяющуюся (регулярную) связь (вообще говоря, — отношение) между объектами, строением объектов, между явлениями разного рода, их формами, свойствами, процессами, состояниями и функциями. В законе выражена инвариантность (постоянство) их существенных характеристик, а также их определенный изоморфизм во времени и пространстве. Закон выражает только что обрисованные связи (отношения) как между целостностями (объектами) разного рода, так и между их внутренними уровнями строения, элементами, свойствами, между действительным, возможным и невозможным, необходимым и случайным и др.

Выполнение (абсолютное и относительное) любого закона как процесса и как инварианта всегда ограничено природой объектов отношений, причинами и условиями (средой), в которых находятся объекты, о которых идет речь, свойствами и состоянием описываемых объектов, а также условиями существования / несуществования их свойств, уровней строения, состояний и отношений. В природе беспричинных законов не бывает.

На языке обыденного сознания закон – это постоянный, правильный, упорядоченный, неизменный, нерушимый, безусловный и регулярный, может быть, даже и всеобщий, а не частный ход вещей, событий, некое правило. Т.е., закон-это тот метод, та манера, те правила, которыми наше сознание воспринимает ряд явлений; весь он содержится в сознании. В действительности, наше сознание резонирует с законами пространства и времени, иначе оно не детерминировало ни одного закона из пространства во времени.

Мозг человека, являясь системой управления организма, использует детерминированные законы сознанием для развития и новообразований личности субъекта. На основе этого законом называем последовательное или одновременное повторение известных явлений, сопровождаемое убеждением в регулярности их повторения, позволяющим нашему сознанию обнять общий метод всей серии явлений, а мозгу направить организм в том направлении, которое свойственно его природе или естественному развитию.

Из вышеизложенного следует, что организация образовательного процесса на основе «принцип – законности» требует иного подхода к обучению, а именно: процесс обучения должен выстраиваться на осознании причинностей, закономерностей, генетической связи, взаимодействий и обусловленности всех явлений и процессов, происходящих во времени и пространстве. Такой подход философии выражается понятием «детерминация». Термин детерминизм происходит от лат. determino (определяю). К числу всеобщих категорий детерминизма относятся причина и следствие, отношение, связь, взаимодействие, необходимость, случайность, условие, обусловленность, возможность, действительность, невозможность, закон и др.

Основываясь на идеи детерминизма, мы считаем, что «принцип — законности» дополнит и систематизирует методы обучения в дидактике согласно «сквозным законам», которые необходимо использовать. В свое время, подчеркивая историчность обнаружения единства законов разных предметных областей в рамках физики, И.В. Кузнецов сделал акцент также на обнаружении именно их единства. Он писал: «Имеется ряд «сквозных законов», общих не только с «соседними», непосредственно сменяющими друг друга теориями, но и всеми вообще физическими теориями. Такими являются, например, закон сохранения и превращения энергии, законы сохранения импульса и момента количества движения».

Данную идею «сквозных законов» возможно, экстраполировать на область дидактики, а именно использовать ее как методологическую основу в построении научной теории обучения.

В пользу нашего замысла, можно привести пример: Допустим, мы хотим рассчитать движение молекул в газе на основе ньютоновских законов движения. Мы составляем программу, по которой компьютер будет вести счет; в ней предусмотрено, как будут изменяться скорости молекул, когда они столкнутся друг с другом. Эта программа есть описание молекул газа в потенции. Она содержит полную информацию, управляющую движением нашей системы, но ничего не говорит о конкретном движении каждой из молекул газа. В программе ничего не говорится о том, когда именно будут сталкиваться молекулы, в ней лишь предуказывается, что будет происходить, коль скоро они столкнутся.

Эти моменты столкновений будут определяться, когда программа будет запущена в счет, когда она будет реализовываться компьютером. Только прослеживая движение каждой молекулы шаг за шагом — в соответствии с заданными в программе рецептами (т.е. заданными нами законами), компьютер установит моменты столкновений молекул и тем самым опишет их конкретные движения в пространстве и времени. Из данного примера, можно сделать вывод: процесс обучения также можно выстроить по сквозным законам (в нашем случае это закон сохранения информации) и знать, а не предполагать, какие новообразования происходят или будут происходить учащихся в процессе сохранения информации.

Под законами сохранения в науке понимают — фундаментальные физические законы (закон сохранения и превращения энергии, закон сохранения импульса, закон сохранения массы, закон сохранения механической энергии, закон сохранения момента импульса, закон сохранения электрического заряда), согласно которым при определенных условиях некоторые физические величины не изменяются с течением времени.

Под информацией мы понимаем не любые сообщения, передаваемые в субъект – субъектных или объект — субъектных отношениях в процессе обучения, а лишь те, которые уменьшают неопределенность у получателя информации, т.е. ученика. Чем больше уменьшается эта неопределенность в сознании субъекта, тем больше снижается минимум информации, который необходимо получить, чтобы ликвидировать неопределенность прогнозируемой деятельности по решению проблемных ситуаций на уроке.

Следовательно, закон сохранения информации для теории обучения можно выразить так, информация сохраняется в сознании субъекта до тех пор, пока процесс преобразования новой информации, не снизит уровень неопределенности понимания изучаемого объекта.

Обозначим, что учитель на уроке передает ученикам вторичную информацию. Содержание вторичной информации в человеческом обществе – это знание об окружающем нас мире, определяющее поведение человека, т.к. опираясь на эти знания, человек взаимодействует с остальной природой. Сама эта природа в виде формы (структуры) окружающих нас вещественных тел и их движения представляет собой первичную информацию.

В теории связи, информация выступает в виде различных сообщений: например, букв или цифр, как в телеграфии, или непрерывной функция времени, как при телефонии или радиовещании, но в любом из указанных примеров в конечном итоге задача состоит в передаче смыслового содержания человеческой речи.

В свою очередь, смысловое содержание речи преподавателя на уроке, может быть представлена: в звуковых колебаниях, в письменном изложении, жестах и мимике. На это удивительное свойство этого вида информации – представлять одно и то же смысловое содержание в самом различном физическом виде – обратил особое внимание исследователей У. Эшби. Это свойство вторичной информации называется кодированием. Для того чтобы общаться с другими людьми, человеку приходится постоянно заниматься кодированием, перекодированием и декодированием.

Так, учитель, обучая учеников, ставит цели и задачи урока, использует инновационные технологии обучения – все это сжатие информации, которая во время урока развертывается. Обучая школьников важно понимать: как можно передать информацию с наименьшей потерей. В педагогике для лучшего усвоения учебного материала разрабатыны методы обучения.

Существуют 3 метода обучения: пассивный, активный, интерактивный.

• пассивный – обучаемый выступает в роли «объекта» обучения (слушает и смотрит);

• активный – обучаемый выступает «субъектом» обучения (самостоятельная работа, творческие задания);

• интерактивный – взаимодействие. Процесс обучения осуществляется в условиях постоянного, активного взаимодействия всех участников. Ученик и учитель являются равноправными субъектами обучения.

Как видим из представленных методов, в них нет даже намека на понимание механизма сохранения информации в сознании субъекта.

Например, метод активного обучения: учащийся выступает «субъектом» обучения. при помощи этого метода учащийся должен усваивать учебный материал. Но сам по себе метод не даст результата, т. к. учащийся не знает, как в процессе его активности, происходит сохранение информации? А ради этого сохранения информации он и проявляет активность. Знает ли педагог – как в процессе активности ученика сохраняется информация? Мы считаем, что применяемый метод активного обучения реализуется субъектами образовательного процесса — не осознанно. Если быть еще конкретнее, то активность субъектов образовательного процесса без осознанности механизма сохранения информации в сознании одного из них похоже на дрессуру (под которой часто понимают процесс формирования навыка), а не на обучение.

Обратим внимание на речь в процессе реализации метода обучения. Учитель, используя буквы в определенной последовательности и озвучивая их, кодирует информацию. Эту кодированную информацию ученики должны запомнить. Зададим вопрос: Кодирование передаваемой информацию (в звуковых колебаниях, в письменном изложении, жестах) в виде определенной последовательности влияет на ее сохранение или нет?

Отвечая на данный вопрос, обратимся к К. Шеннону. К. Шеннон, заметил, что при передаче словесных сообщений частота использования различных букв алфавита не одинакова: некоторые буквы используются очень часто, другие — редко. Существует и определенная корреляция в буквенных последовательностях, когда за появлением одной из букв с большой вероятностью следует конкретная другая.

Значит педагог, может кодировать информацию, таким образом, что она будет снижать неопределенность понимания и легче усваиваться учеником. Поэтому, мы можем предположить, что объяснять ясно, понятно и доступно это значит кодировать информацию по определенным правилам соответствующим закону сохранения информации. Постараемся объяснить закон сохранения информации, на простом примере .

Вообразите, что мать оставляет в комнате ребенка с 28 кубиками, которые нельзя сломать. Ребенок играет с кубиками целый день, и мать, вернувшись, обнаруживает, что кубиков по-прежнему 28 — она следит за сохранением кубиков! Так продолжается день за днем, но однажды, вернувшись, она находит всего 27 кубиков. Оказывается, один кубик валяется за окном — ребенок его выкинул. Рассматривая законы сохранения, прежде всего нужно убедиться в том, что ваши предметы не вылетают за окно. Такая же неувязка получится, если в гости к ребенку придет другой мальчик со своими кубиками. Ясно, что все это нужно учитывать, рассуждая о законах сохранения.

В один прекрасный день мать, пересчитывая, обнаруживает всего 25 кубиков и подозревает, что остальные 3 ребенок спрятал в коробку для игрушек. Тогда она говорит: «Я открою коробку». «Нет, — отвечает он, — не смей открывать мою коробку». Но мама очень сообразительна и рассуждает так: «Я знаю, что пустая коробка весит 50 г, а каждый кубик весит 100 г, поэтому мне надо просто-напросто взвесить коробку». Затем, подсчитав число кубиков, она получит: Число видимых кубиков + (Масса коробки- 50 г ) /100 г — опять 28. Какое-то время все идет гладко, но потом сумма опять не сходится. Тут она замечает, что в раковине изменился уровень грязной воды. Она знает, что если кубиков в воде нет, то глубина ее равна 15 см , а если положить туда один кубик, то уровень повысится на 0,5 см . Поэтому она добавляет еще одно слагаемое: Число видимых кубиков + (Масса коробки- 50 г ) /100 г + (Уровень воды — 15 см ) / 0,5 см и снова получается 28. Ребенок становится все более изобретательным, а мать не уступает ему, добавляя все новые и новые слагаемые, которые соответствуют кубикам, но с математической точки зрения представляют собой абстрактные числа, потому что самих кубиков не видно. В чем сходство между сохранением кубиков и сохранением информации и в чем различие. Для начала предположим, что ни при каких условиях вы не можете видеть кубики. Слагаемое «число видимых кубиков» всегда отсутствует. Тогда мать будет складывать множество слагаемых, таких, как «кубики в коробке», «кубики в воде» и т. д. Кубиков информации, насколько нам известно, вообще нет. Кроме того, в отличие от кубиков количество информации не обязательно выражается целым числом. Бедная мама может получить в одном слагаемом 6 1/8 кубика, в другом — 7/8, в третьем — 21 кубик, что по-прежнему составляет в сумме 28. Так обстоит дело с информацией.

Мы установили, что для закона сохранения информации, в нашем понимании, у нас есть схема с целым набором правил. Согласно каждому из этих правил, мы можем вычислить значение для каждого из видов информации. Следовательно, информация — это еще и организованное по определенным правилам пространственное размещение материи. Что это за правило и в какой деятельности они должны проявляться?

Психолого — педагогические эксперименты показали, что при разовом выполнении определенного вида учебной деятельности информация сохраняется в памяти: 10% при чтении; 20% при помощи слуха; 30% при помощи зрения; 50% при помощи слуха и зрения; 70% при помощи слуха, зрения и обсуждения ; 90% в деятельности. Следовательно, память не существует сама по себе, она формируется и проявляется в том или ином виде человеческой деятельности. Тот или иной вид человеческой деятельности и есть кодирование информации посредством создания определенных правил сохранения информации.

Так, содержанием словесно-логической памяти являются мысли, понятия, словесные формулировки. Именно ей принадлежит ведущая роль в процессе усвоения новых знаний при обучении.

Зрительная память – наиболее сильный и в то же время наиболее коварный тип памяти. Потенциал зрительной памяти огромен, но вместе с тем именно она нередко подводит нас, воспроизводя воспринятые образы со значительными искажениями.

Слуховая память направлена на восприятие и анализ звуков. Нам часто приходится рассчитывать только на этот вид памяти, например, при восприятии на слух голоса, музыкальных звуков, иностранной речи. Как правило, слуховая память работает вместе со словесно-логической, например, когда мы воспроизводим на слух лекцию, беседу, телефонный разговор.

Двигательная память играет ведущую роль при овладении различными моторными навыками, например, при обучении игре на музыкальном инструменте, в процессе печатания на машинке, вождения автомобиля и т. д.

Кроме перечисленных типов памяти, можно выделить память эмоциональную , вкусовую , тактильную , произвольную и непроизвольную, которые не менее важны для развитии внутреннего «я» человека, для формирования его стратегий обучения, для развития познавательных способностей, для адаптации в окружающей среде.

Из вышеизложенного, можно предположить, что сохранение информации в сознании зависит от количества видов деятельности и/или от определенного вида деятельности. Чем больше видов деятельности осуществляет ученик, тем объем и длительность сохранения информации увеличивается. Значит, определенный вид деятельности в своей структуре имеет механизм кодирования информации, соответствующий правилам сохранения нужной информации.

Например, навык можно развивать только в процессе собственной деятельности (управление транспортным средством), Знать не значит уметь, отсюда следует, что знания не дают всей информации об изучаемом предмете. Не хватает определенного кодирования информации, которое способствует пониманию исследуемого объекта и овладения им. В процессе формирования навыка и происходит понимания объекта на информационном уровне. Субъект начинает чувствовать исследуемый объект, он считывает информацию, которая имеет другой код, отличный от кода знаний.

Рассмотрим, механизм кодирования информации, процессе формирования ЗУНов с позиции законов общей теории информации.

В общей теории информации существуют конкретные законы. Закон сохранения информации: «Информация сохраняет свое значение в неизменном виде пока остается в неизменном виде носитель информации – память». Основной информационный закон формообразования и развития материи: «Информация определяет информацию».

На основе данных законов, можно сделать следующие умозаключения.

Во-первых, повторение информации не дает новую информацию, а преобразование информации, дает информацию отличную от предыдущей. Преобразование информации увеличивает (изменят) объем памяти за счет запоминания новых механизмов преобразования информации. На основе возникновения информационных механизмов в коре головного мозга, в сознании субъекта появляются личностные отношения к преобразованной им информации, которые свойственны только его психофизиологической структуре, следовательно, передать эту структуру без изменений (без потери информации) другому субъекту он не сможет.

Во-вторых, основываясь на законе: «Информация определяет информацию», то информация является основой формирования личностных качеств субъекта. Т.е., личностное развитие ученика, его новообразования – это есть измененная информация. Объясним: получая огромное количество информации, ученик способен делать выбор, это относится к принципу выбора решения . Данный принцип кибернетики заключается в том, что решение должно приниматься на основе выбора одного из нескольких вариантов. Этот принцип учитывает взаимосвязанность и обусловленность количественных и качественных изменений. А переход количества в новое качество рассматривается как развитие. Следовательно, обучение ученика происходит на основе сохранения и выбора информации в его сознании. Отсюда вывод: выбор – это преобразование информации в соответствии поставленной цели. Процесс обучения соответствует развитию в ученике психических функций, т.е., происходит процесс, сопровождающийся новообразованием и преемственностью в ряду сменяющих друг друга состояний субъекта развития.

На основе имеющихся знаний ученик усваивает информацию, преобразует ее и использует, происходит преемственность информации. П реемственность под, которой понимают меру причинной зависимости (неслучайности) последующих состояний субъекта развития от предыдущих , связывает те и другие в единый целостный процесс развития и придает ему свойство определенной упорядоченности, направленности и устойчивости (по терминологии К.Х. Уоддингтона).

Сохранение информации в сознании субъекта возможно, когда в его сознании существует мера причинной независимости неопределенности последующих состояний субъекта развития по отношению к предыдущим. Эта мера (или новизна) обуславливает: 1) саму возможность последовательной смены предыдущих состояний последующими; 2) отсутствие строго детерминизма.

Следовательно, закон сохранения информации в сознании предполагает, необходимость понимания механизмов преемственности и новизны . Это логически альтернативные, но при этом строго дополнительные понятия. Каждая из них неявно (имплицитно) предполагает противоположное.

Преемственность предполагает обновление информации в сознании ученика. В противном случае субъект развития останется неизменным. В процессе обучения, чем сильнее преемственность, тем слабее происходят новообразования ученика, а значит хуже идет процесс обучения.

Новизна предполагает преемственность. Чем больше новизна, тем менее однозначна и жестка связь каждого предыдущего состояния с последующим, тем более прерывистым (дискретным, нелинейным) может быть процесс обучения. Но одновременно рост новизны понижает преемственность и увеличивает риск ее прерывания, следовательно, риск прерывания динамики процесса обучения и обучение будет не равномерным, прерывистым, а в последствии — не эффективным.

Смотрите так же:

  • Приказ минюста об утверждении правил внутреннего распорядка Приказ Минюста России от 06.07.2017 N 127 "О внесении изменений в Правила внутреннего распорядка исправительных учреждений, утвержденные приказом Министерства юстиции Российской Федерации от 16.12.2016 N 295" (Зарегистрировано в Минюсте России 11.07.2017 N […]
  • Ставки налога на квартиру в 2014 году Установлены новые ставки налога на имущество физических лиц на 2014 год 18 декабря 2013 года депутаты городской Думы одобрили новые ставки налога. Итак, в 2014 году налог будет уплачиваться с суммарной инвентаризационной стоимости объектов недвижимости, […]
  • Налог на прибыль сроки сдачи в 2018 году Срок сдачи декларации по налогу на прибыль Актуально на: 23 января 2018 г. Организации по ОСН в течение года представляют декларации по налогу на прибыль по итогам отчетных периодов. Частота представления таких деклараций зависит от способа уплаты авансовых […]
  • Приказы по увр в школе Из опыта работы ЗАВУЧА школы по ОД, УВР - Внутришкольный контроль, справки ВШК контроля Внутришкольный контроль - это сложный и многосторонний процесс, и он, как всякое целое, обладает некоторой закономерной упорядоченностью, организацией взаимосвязанных […]
  • Заявление об уменьшении доходов на сумму стандартных вычетов Заявление об уменьшении налога на сумму стандартного налогового вычета При определении налоговой базы по НДФЛ доходы физического лица, облагаемые по ставке 13%, уменьшаются на сумму налоговых вычетов, перечисленных в ст. 218—221 НК РФ: стандартных, […]
  • 3 штрафа лишение Лишение прав за три нарушения ПДД Новый закон о лишении прав за троекратные нарушения правил дорожного движения 30 мая 2016 года в Государственную Думу Российской Федерации Правительством был внесен законопроект, который предусматривает лишение водительских […]
  • Образец постановление суда по делу об административном правонарушении Образец постановление суда по делу об административном правонарушении Автострахование Семейные споры Жалоба на постановление об административном правонарушении Образец жалобы на постановление об административном правонарушении. См. комментарии в […]
  • Алименты выплачивать родителям В каких случаях можно законно не выплачивать алименты? Алименты – обязательные выплаты на содержание детей и нетрудоспособных родственников. Иногда плательщик считает, что платить не должен, и желает узнать, как не платить алименты. Мы расскажем о законных […]